
The DRACON Embedded Many-Core: Hardware-enhanced

run-time Management using a Network of Dedicated

Control Nodes

Daniel Gregorek, Alberto García-Ortiz

Institute of Electrodynamics & Microelectronics, University of Bremen, Bremen, Germany

Abstract

Many-core systems provide abundant computing power for parallel applications. The run-

time manager of an embedded system has to efficiently exploit the available resources

while guaranteeing a high responsiveness. We propose a dedicated hardware

infrastructure to improve the scalability and responsiveness of a run-time task manager.

The hardware enhancements constitute a hierarchy of global and local control nodes

which communicate by means of message passing. The global nodes facilitate a distributed

task manager which performs the task scheduling and a flexible task synchronization

scheme at runtime. A low-latency interface between the run-time system and the

processing cores is provided by the local nodes.

Based on simulations using a SystemC model, we demonstrate the advantages of our

approach in terms of application performance. The design feasibility is substantiated by

means of gatelevel analysis. We compare our results against state-of-the-art software and

hardware-based run-time management systems.

Published in:

International Symposium on VLSI (ISVLSI) 2015, 2015

Date of Conference: 8-10 July, 2015

Page(s): 416-421

DOI: 10.1109/ISVLSI.2015.90

Conference Location : Montpellier, France

URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?&arnumber=7309603

Publisher: IEEE

This page was intentionally left blank

The DRACON Embedded Many-Core:
Hardware-enhanced run-time Management using a

Network of Dedicated Control Nodes
Daniel Gregorek, Alberto Garcia-Ortiz

Integrated Digital Systems Group
ITEM, University of Bremen, Germany
{gregorek,agarcia}@item.uni-bremen.de

Abstract—Many-core systems provide abundant computing
power for parallel applications. The run-time manager of an
embedded system has to efficiently exploit the available resources
while guaranteeing a high responsiveness. We propose a dedicated
hardware infrastructure to improve the scalability and respon-
siveness of a run-time task manager. The hardware enhancements
constitute a hierarchy of global and local control nodes which
communicate by means of message passing. The global nodes
facilitate a distributed task manager which performs the task
scheduling and a flexible task synchronization scheme at run-
time. A low-latency interface between the run-time system and
the processing cores is provided by the local nodes.

Based on simulations using a SystemC model, we demonstrate
the advantages of our approach in terms of application perfor-
mance. The design feasibility is substantiated by means of gate-
level analysis. We compare our results against state-of-the-art
software and hardware-based run-time management systems.

Keywords-run-time task manager; embedded many core; hard-
ware enhancements;

I. INTRODUCTION

Power-density and reliability are becoming primary con-
cerns in ultra-deep-submicron chip design. Many-core archi-
tectures are a promising candidate to address the upcoming
challenges [2]. Dynamic hardware faults or changes of the
user requirements make run-time task scheduling a necessary
feature of the many-core system. But finding an optimal sched-
ule for parallel applications usually requires an unaffordable
amount of resources (NP complete) leading to the employment
of heuristics for the run-time manager.

The demands for high performance, low power and deter-
ministic response time advice for a hardware implemented
solution of the run-time task manager [14][8]. Goal of the
dedicated hardware is to reduce the management overhead
and improve the overall system performance. It is therefore
predicted [16], that hardware support for run-time system
management will attain into mainstream for many-core plat-
forms. Especially for embedded systems, where low-power is
a crucial design constraint, the application specific hardware
implementation of a task manager can become necessary.

Different architectural approaches for the dedicated system
management have been reported in the literature. Centralized
approaches have been shown to lack scalability for the on-line
computation with an increasingly large number of cores [13].
Also, traffic hot-spots may become a bottleneck for such
architectures. On the other hand, the overhead introduced by a
fully-distributed approach can supersede the potential benefits.
As a consequence, choosing the right granularity for an on-
chip task manager remains an insisting optimization problem.

The idea of having a separate network for task synchroniza-
tion has been described before by Herkersdorf [9]. State-of-
the-Art many-core designs contain such dedicated hardware
for synchronization (e.g. Tilera [1], Intel SCC [18], Kalray
[6] and STHORM [23]). But to our best knowledge, we are
the first to present and to analyze a full-fledged task man-
agement infrastructure using a dedicated hardware network.
Our contribution, the DRACON many-core (Dedicated Run-
Time Architecture Control Network) focuses on low latency
and predictability for run-time task management. The control
nodes implement a message passing protocol for communi-
cation. The task management is charged with scheduling and
synchronization of user tasks. Key feature of the dedicated
network is the capability to perform parallel computation and
to minimize the overall management latency.

The remainder of this paper is organized as follows: Sec. II
discusses related work from the domain of run-time task man-
agement, Sec. III and Sec. IV present our system architecture
and give details about the task manager. In Sec. V we show and
analyze our experimental results and finally Sec. VI concludes
the paper.

II. RELATED WORK

The design space for run-time system management can be
categorized into distributed versus centralized architectures,
as well as into hardware versus software implementations
[16]. Further, we localize along the hardware-software axis
programmable approaches with optimized instruction sets.

A representative for a symmetric software-based run-time
system is the Linux OS kernel. Linux has been shown to
provide good scalability and high performance, even in the
many-core domain [3]. Due to the shared-memory design,
Linux depends on high-performance cache coherence and fine
grain lock access.

A centralized OS-specific circuit resolving time critical
task dependencies at run-time has been implemented by
Nexus++ [5]. It has been designed to overcome a performance
bottleneck involved by a software-based Master/Slave run-
time system. An optimized processor architecture has been
proposed by TMU [22] which employs an application specific
instruction set optimized for task management. The TMU
contains the capability to perform look-ahead computation.
However, both solutions lack scalability due to the drawbacks
of centralism in computation and communication.

A globally distributed and dedicated hardware approach
has been implemented by Isonet [13]. Isonet applies a fully-
distributed network of dedicated management nodes for hard-

Fig. 1: Architecture of the dedicated control network for task management (drawn gray) on top of a baseline many-core system (drawn
dimmed). The DRACON network consists of global nodes (AGM) and local nodes (LMC). The nodes communicate by means of message
passing and perform the task scheduling and synchronization at run-time. The processing elements are connected by a common many-core
interconnect.

ware supported load balancing. Using independent tasks, the
approach claims to be scalable for more than 1024 cores. Yet,
due to a limited synchronization scheme, the Isonet nodes
may not find a globally optimal load balance. A lightweight
HW/SW run-time framework for task management is pre-
sented by ARTM [17]. But, while ARTM uses the hardware
semaphores included in the STHORM many-core architecture
their evaluation is limited to intra-cluster task synchronization.
As an advancement (see Tab. I) we propose the DRACON
architecture as a full-fledged and global-view HW/SW run-
time task manager.

TABLE I: DRACON vs. related work.

Arch. Performance Scalability Area Overhead
Software o + ++
Nexus++ + o o
Isonet + + -
DRACON ++ + -

III. SYSTEM ARCHITECTURE

We propose a hierarchical and distributed network for run-
time task management. The network enhances a common
many-core system and is hierarchical by means of a clustering
of the resources to be managed. It is also distributed, since
each cluster can be managed autonomously. Fig. 1 gives an
outline of our proposed system architecture. The hardware
enhancements establish an infrastructure of dedicated manage-
ment resources (drawn gray). The baseline many-core system
(drawn dimmed) consists of numerous processing elements
(PE), connected by a common multiprocessor-interconnect. As
a low-latency interface, we closely couple a local management
controller (LMC) to each PE. The LMCs are connected to a
local management interconnect, which constitutes a cluster of
PE + LMC pairs. Each cluster is controlled by an autonomous
global manager (AGM). Communication between the AGMs
is done via a global management interconnect. For the sake
of readability we explain the particular hardware and software
components side-by-side to our SystemC model.

A. Baseline System

As an initial baseline, we consider a homogeneous many-
core system for our analysis. The many-core consists of RISC-
like processing elements which are connected by a common
many-core interconnect. For the SystemC model we consider
the common interconnect to be a simplified Network-on-
Chip without virtual channels having a mesh topology and
XY-routing. The baseline system is not necessarily clustered
by itself, the hierarchy is only constituted by the additional
hardware enhancements. We employ a functional model for
the processing elements, which interprets a task-based pro-
gramming language (see also Sec. V). The employed network
model considers effects like hop-distance, communication-
volume and link utilization. The baseline NoC is only respon-
sible for data transfer between the PEs (task communication).
The NoC is not connected to any external memory or I/O,
which is out of the scope of this paper.

B. Autonomous Global Manager

Each instance of the AGMs realizes one instance of the
task manager on a dedicated processor and further contains an
interface to the dedicated messaging protocol. The AGMs run
a OS based on Micro-C/OS-II [11] which has been extended
to a light-weight and distributed multicore OS. The AGMs im-
plement the run-time task scheduling, the task synchronization
and a cluster status communication mechanism (see Sec. IV).
They monitor the activity (number of running tasks), and the
number of mapped tasks inside their cluster. Each AGM has its
private address-space, the communication between the AGMs
and between one AGM and LMC is determined by the message
protocol presented in Sec. III-D.

C. Local Management Controller

The local management controller (LMC) is constituted by
a messaging interface, a system-call dispatcher and a tightly-
coupled interface to the PE. The dedicated hardware LMC
can be implemented with low area overhead (see Tab. V)
and operates in parallel to the PE. Any system-call from a
user task is fetched by the LMC and dispatched to its global
node by means of a dedicated message. Due to the dedicated

TABLE II: System calls with inputs, outputs, and type of required context-wwitch.

Name in out Context switch Description
os-task-spawn imem, dmem,

cnt
SW only Recursively spawn number of child tasks (cnt) with given instruction- (imem)

and data-memory (dmem) address.
os-task-exit addr SW only Send a signal to the synchronization barrier given by addr and terminate

recursive child task. The parent task is restarted, if all child tasks have finished.
os-info-send key, value SW only Send 32-Bit value to key.
os-info-recv key, cnt value(s) SW and LMC Receive 32-Bit value(s) by key. Blocks the task until all values are available.
os-get-pe pe-id none Get numeric identifier of PE

infrastructure for the task management the PE is discharged
from the execution of the OS service.

D. Messaging Protocol

We send messages via the dedicated interconnects to imple-
ment the communication between the hardware nodes. Each
message has a header and one or more 32-Bit data fields. The
header contains the message type, at least the source address,
the message priority and a broadcast flag. The size of the
message header depends on the actual hardware configuration
(i.e. number of nodes/address-width) and the direction of the
message. In the following we give a short overview about
the implemented messages ordered by the direction of the
conversation. A comprehensive reference can be found at the
end of the paper (Tab. VI).

LMC to AGM: Most of the messages from the LMCs
to the AGMs directly correspond to the system calls given
in Tab. II and are send from a local controller to its global
node. Messages from an LMC have a unique destination and
therefore have a reduced header.

AGM to LMC: We send the message msg-task-start
from an AGM to a LMC. The message transports a task
identifier (tskd), and the task’s stack-pointer as message data.
It invokes the start of a task at the LMC. If the task has
previously raised a system call, the message also transports
the return value(s) of the call.

AGM to AGM: An AGM may also request to start a task
at a remote cluster, therefore the message msg-task-give
can be send from one AGM to another AGM. Since com-
municating task may be located inside different clusters, the
task synchronization presented in Sec. IV-C also requires
inter-AGM communication. To broadcast the current cluster
workload status (see Sec. IV-D) the AGM uses the message
msg-beacon.

IV. TASK MANAGEMENT

Principal duty of the task manager is the scheduling and
synchronization of the user tasks. Each task is considered to
be sequential while the whole application is defined by a task
graph [21] and consists of numerous depending tasks. The
task graphs may contain task-level parallelism which must be
exploited by the run-time task manager.

The run-time task management requires computation time
to service the system-calls and to schedule (map) user tasks
to processing elements [20]. Fig. 2 illustrate the inherent
advantages of our hardware-enhanced run-time manager ver-
sus a software-based approach (for a more general HW-SW
comparison see also [16]). A software approach will, at least
initially, service a system call at the local processing element
and requires more context switches (Fig. 2a). The hardware

enhanced DRACON task manager forwards a system call (Fig.
2b) by means of a message to the AGM. The AGM services the
system calls and may pre-compute the scheduling before going
idle. If a PE becomes idle, the next tasks can be dispatched
immediately. The responsiveness of the management system
is therefore improved and the PEs are given more time
for processing the user task. The response-time of the user
applications is increased, while the standard deviation of the
response-time is decreased.

Throughout this paper the user tasks can access the system
calls given in Tab. II. Most of the system-calls require a
context switch in a software-based implementation. Using the
hardware enhancements only the call to os-info-recv
triggers a context switch while the calling task is blocked and
transported to its AGM.

A. Recursive Task Fork

Since our targeted task scheduling problems consist of task
sets having a large number of tasks, we use a recursive
task spawning/fork strategy [12]. Every recursive task spawns
two additional system tasks and then blocks until its child’s
have terminated. The recursive start-up follows a dynamic
cluster mapping procedure which tries to equally distribute
the recursive system tasks onto the clusters. After the binary
fork-tree has stopped to expand, the actual child tasks of the
application are spawned. The final number of working child
tasks is fixed and determined by the application profile.

B. Task Scheduling

The spatial and temporal task scheduling is performed on
a cluster-basis by the AGMs. Each AGM contains one ready
queue for waiting tasks. Our scheduling is quasi-preemptive:
a running user task may be preempted by a higher priority
system task but not by another user task. We use different
scheduling algorithms depending on the application type. The
algorithms have different time complexities depending on the
number of ready tasks n or the number of PEs m. Usually,
there is a trade-off between the time complexity and the quality
of the scheduling algorithm [10].

(1) Round-Robin: We apply round-robin scheduling for
independent tasks. The tasks are mapped and dispatched to
the first idle PE. Scheduling time complexity is O(1).

(2) Max-Bottom-Level: For applications containing task
dependencies we use a Max-Bottom-Level-First algorithm
[21]. The ready tasks are stored inside a priority queue which
is implemented as a Red-Black Tree and has a logarithmic
time-complexity for inserting and removing [4]. The tasks are
mapped and dispatched to the first idle PE. Time complexity
is O(log n).

Fig. 2: Comparison of task manage-
ment for one task ni having two
input and two output edges. The in-
put data has arrived before the start
of the given sequence. The software
approach (a) runs at the same PE and
interrupts the user task for OS ser-
vice. The software approach sched-
ules as late as possible.
The hardware-enhanced solution (b)
implements the same OS interface
but sends messages between the
LMC and the AGM. The hardware
approach requires less interuption of
the user task and schedules as soon
as possible in parallel to the PE. The
outcome is an earlier dispatching of
the next waiting task nk.

(3) Nearest-Idle: To address the Manhattan distance be-
tween communicating tasks we apply the Max-Bottom-Level
task selection. The selected task is mapped and dispatched to
an idle PE nearest to the location of the application’s parent
task. Scheduling time complexity is O(log n+ logm).

C. Task Synchronization

To have a flexible task synchronization sub-system which
is able to work in a distributed environment, we developed
a communication infrastructure based on key-value hash ta-
bles. Each global management node maintains one hash table
autonomously at run-time. A task synchronization event is
assigned to a unique key. User tasks can request to send a
(non-empty) value to an arbitrary key. To allow tasks to wait
until all of their input values have arrived, the system-call
os-info-recv has been implemented. A task may therefore
wait for a specific amount of values and then becomes ready
for scheduling.

The synchronization sub-system does not contain critical
races and utilizes a dynamic localize-at-receive mechanism:
Every time a read request occurs, and the key position is
not yet known or has changed, the position of the new
key is broadcasted by the AGM via the global interconnect.
The other AGMs read that broadcast and update their key
positions accordingly. The broadcast is fully transparent to the
user tasks, and allows their synchronization, even when tasks
change their position from one cluster to another. Any value
which is send to a key, who’s position is not yet discovered,
is pending until the required broadcast occurs. As soon as
the position of a given key is known, a transport of the
waiting values to the discovered position is triggered. In our
implementation, we use the task synchronization sub-system
to transport memory addresses between communicating tasks.

D. Cluster Status Communication

To perform the run-time task scheduling in an efficient
manner it depends on reliable information about the global
and local workload status. We use a broadcast message to
inform all global managers about the local workload and
apply a threshold-based mechanism to decide, whether to
send that broadcasting message. The mechanism triggers the
transmission, when the change in the number of locally active
tasks reaches a certain threshold ∆nth.

TABLE III: Benchmark characteristics: (a) number of workers, (b)
total amount of work, (c) maximum task workload, (d) number of
communication edges, (e) total sum of communication volume, (f)
maximum edge communication volume.

Name (a) (b) Ticks (c) Ticks (d) (e) 32b (f) 32b
Indep. 1e4 2e7 2e3 0 0 0
Horiz. 8160 1.632e8 2e4 8092 0 0
Sparse 96 309760 5440 67 13668 204

V. EXPERIMENTAL RESULTS

In our analysis we consider three different types of parallel
applications. Their characteristic values are given in Tab. III.
The first one assumes totally independent child tasks, the
second has horizontal dependencies between child tasks, and
the third one (Sparse) is a real-world task graph and is taken
from the MCSL benchmark suite [15]. We use a transaction-
level framework [7] implemented in SystemC to evaluate our
hardware/software architecture. It uses a blocking transaction
level methodology and TLM 2.0 sockets. The framework
employs a task-based programming model to describe the
behaviour of the user applications. The tasks are defined by
trace instructions which are interpreted by the PE model. The
traces consider the execution time, input edges and output
edges of the tasks as well as their communication volume.
Task communication is modeled by means of reading via
the common NoC from the remote memory of a processing
element.

For comparison with current state-of-the-art, we employ a
symmetric software-based operating system and a centralized
hardware implementation [5]. Since Isonet is only targeting on
applications having independent tasks we do not compare to
them. Both the reference measurements and DRACON provide
the same syscall interface as given in Tab. II and make use
of the same scheduling algorithms. In contrast, the software
OS is only running at the baseline hardware of the many-core
system. Due to the symmetry, one instance of the software OS
is running at each PE. The software OS uses shared resources
for scheduling, which are protected by fine-grained locks. The
OS must acquire a lock before reading from the resource
but we allow an asynchronous write to the shared resource.
The locking ensures sequential read but allows concurrent
computation and write to the shared resources. We do not
consider any further memory contention or communication
overhead for the software OS but assume fully coherent caches

 0

 50

 100

 150

 200

 250

 300

 350

 400

8 16 32 64 128 256 512

2 4
4

4

8

16

16
Symm.-SW

Nexus++
DRACON

(a) Independent Tasks

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256 512

2

4

4

4

8 16 16
Symm.-SW

Nexus++
DRACON

(b) Horizontal Dependencies

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32 64

1

1

1

2

4
4 4Symm.-SW

Nexus++
DRACON

(c) Sparse-Matrix Solver

Fig. 3: Speedup versus number of PEs. The number of AGMs is given on the top of each DRACON column

TABLE IV: Timing parameters of the transaction-level model
Description Value Stakeholders
Scheduling delay coefficient 24 Ticks SW-OS, AGM
System call 8 Ticks SW-OS, LMC
Context switch 16 Ticks PE
Task-Info Synchronization 16 Ticks SW-OS, AGM
Lock access 8 Ticks SW-OS
Software FIFO access 4 Ticks SW-OS, AGM
TX/RX of message 4 Ticks AGM, LMC
Local man. interconnect 64 Bit AGM, LMC
Global man. interconnect 64 Bit AGM
Common interconnect 128 Bit Baseline NoC

in the background. For the second reference measurement we
compare to the centralized hardware implementation Nexus++.
We use a single AGM and calibrate our model according to
the speedup values available for Nexus++ [5] and the synthetic
benchmark containing horizontal task dependencies.

Tab. IV shows the parameters, which have been set for our
transaction-level model. Both the DRACON architecture as
well as the software reference have to cope with the same tim-
ing parameters for the task scheduling and task synchroniza-
tion and the same baseline hardware. In our current work the
management interconnects are implemented as shared buses,
but our architecture allows to use other topologies as well.
As a metric for the performance we measure the application
speedup S = tseq/tpar. In a first instance, each benchmark
is run individually while the number of processing elements
is increased. The resulting values for the speedup S are given
in the Fig. 3. DRACON provides good scalability for fine-
grain independent tasks (Fig. 3a) and the analyzed number
of up to 512 PEs. The software approach reveals a scalability
bottleneck due to a locking in the task mapping part of the
scheduler. The speedup for the centralized approach Nexus++
does not scale beyond 64 PEs. The horizontal benchmark
(Fig. 3b) contains more coarse-grained tasks and has a
maximum parallelism of 68. The parallelism is almost fully
exploited by DRACON. Nexus++ benefits from the larger task
size and exhibits good performance. The software approach
must compete for computing power at the PEs and requires
a much higher number of PEs to achieve the same speedup.
The sparse-matrix solver (Fig. 3c) contains moderate inter-
task communication and has a theoretical speedup limit of
S = 15.78 due to it’s critical path in the task graph. For 16
PEs both DRACON as well as Nexus++ reveal their strengths
due to its parallel scheduling capacities. For a larger number
of PEs the distance between communicating tasks increases
and the speedup slightly decreases.

In Tab. V we provide values for the gate-level area overhead
of one AGM, LMC and PE. The values have been obtained
using an industrial 65nm low-power process. Each AGM
and each PE contain one dedicated RISC processor which
is implemented as mLite/PLASMA CPU [19]. We consider
32-Bit RX buffers for message communication inside each
AGM. Assuming a system of 256 PEs and 16 AGMs the
RX buffers have a size of 16 entries which gives one RX
entry per connected node at the local and the global dedicated
interconnect. To address the impact of on-chip memory we
also consider 4kB of SRAM per PE and AGM.

TABLE V: Area [µm2] for 65nm technology
Unit Total Comb. Non-comb. fmax

AGM 81003.8 20072.8 60931.0
502.5 MHzcore 30397.3 17313.1 13084.2

mem 50606.5 2759.7 47846.8
PE 63367.9 14246.2 49121.7

529.1 MHzcore 27627.8 14241.9 13385.9
mem 35740.1 4.3 35735.8

LMC 858.6 375.5 483.1 543.4 MHz

As a final evaluation we run all of the three benchmarks
simultaneously for 10 iterations on a many-core system con-
taining 256 processing elements. The DRACON network is
configured to use 16 AGMs and the threshold for the clus-
ter status communication has been set to ∆nth = 4. We
measure the linear average for the application speedup S
and the standard deviation σ of the normalized application
response-time tpar/tseq . The results of the simulations and
the approximated total area are given in Fig. 4. The DRACON
architecture has an average speedup S which is 20.56% higher
compared to the software approach while at the same time
the standard deviation is reduced by a factor of 2.96. The
centralized approach Nexus++ is simply overburdened due to
the large number of PEs. The area overhead of DRACON is
approximated to be 9.4% compared to a common software
approach.

VI. CONCLUSION

This paper presents DRACON, a scalable network of control
nodes for run-time task management on embedded many-
cores. The network of control nodes performs the commu-
nication and computation for task management in parallel
to the processing cores. This is exploited to prepare task
management decisions without disturbing the user application
and to improve the responsiveness of the system.

TABLE VI: DRACON messages. Size is given in 32-bit words
Name Size Parameters Dir. Description
msg-task-start 2+ tskd, stack,

size
AGM to LMC Start task at destination LMC by means of the task descriptor (tskd),

stack pointer (stack). The message may contain additional data words
msg-task-spawn 4 parent, imem,

dmem, cnt
LMC to AGM Spawn new tasks of count cnt with given parent, instruction- and data

memory address
msg-task-give 4 parent, imem,

dmem, rcsv
AGM to AGM Request start of a tasks at another AGM. The parameter rcsv is required

to implement the recursive task fork mechanism
msg-task-exit 2 tskd, join LMC to AGM,

AGM to AGM
Terminate task and/or signalize to join barrier join

msg-beacon 1 status AGM to AGM Broadcast load status
msg-info-recv 2 tskd , key, cnt LMC to AGM Let task receive cnt synchronization values for key.
msg-info-send 2 key, value LMC to AGM,

AGM to AGM
Send synchronization value to key

msg-info-cast 1 key AGM to AGM Broadcast key position

 0

 10

 20

 30

 40

 50

 60

 70

(a) Speedup

 0.01

 0.1

 1

(b) Deviation σ

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

(c) Area [µm2]

Fig. 4: Comparison of speedup, deviation of response-time and total
area for a symmetric software-approach, a centralized hardware task
manager (Nexus++) and DRACON on 256 PEs.

Our performance evaluation employs a transaction-level
SystemC model and a task-based programming language. We
implemented fundamental task scheduling and task synchro-
nization algorithms to realize the distributed and hardware-
enhanced task management. The results fortify the DRACON
perspective to efficiently handle the complexity of run-time
management for ultra-deep-submicron chip designs.

For 64 processing cores and horizontal task dependencies
we achieve a 12% higher application speedup compared to a
centralized hardware implementation and 70% higher speedup
compared to a software approach. The 10% area investment
for DRACON, although not negligible, is justified by the much
higher performance outcome and better predictability. For 256
processing cores, DRACON outperforms a software approach
by 20% in terms of speedup and has around three times smaller
standard deviation of application response time when running
a mixture of benchmarks.

REFERENCES

[1] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, et al. Tile64-processor: A 64-
core soc with mesh interconnect. In Solid-State Circuits Conference,
ISSCC, pages 88–598. IEEE, 2008.

[2] S. Borkar. Thousand core chips - a technology perspective. In DAC,
2007.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich. An analysis of linux scalability to many
cores. 2010.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al. Introduction
to algorithms, volume 2. MIT press Cambridge, 2001.

[5] T. Dallou and B. Juurlink. Hardware-based task dependency resolution
for the starss programming model. In Parallel Processing Workshops
(ICPPW), 41st International Conference on. IEEE, 2012.

[6] B. D. d. Dinechin, P. G. d. Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel. A distributed run-time environment for the
kalray mppa-256 integrated manycore processor. Procedia Computer
Science, 18:1654–1663, 2013.

[7] D. Gregorek and A. Garcia-Ortiz. A transaction-level framework for
design-space exploration of hardware-enhanced operating systems. In
International Symposium on System-on-Chip (SOC 2014). IEEE, 2014.

[8] N. Gupta, S. Mandal, J. Malave, A. Mandal, and R. Mahapatra. A
hardware scheduler for real time multiprocessor system on chip. In
VLSI Design, 2010. VLSID’10. 23rd International Conference on, pages
264–269. IEEE, 2010.

[9] A. Herkersdorf, A. Lankes, M. Meitinger, R. Ohlendorf, S. Wallentowitz,
T. Wild, and J. Zeppenfeld. Hardware support for efficient resource
utilization in manycore processor systems. In Multiprocessor System-
on-Chip, pages 57–87. Springer, 2011.

[10] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the
task graph scheduling algorithms. Journal of Parallel and Distributed
Computing, 59(3):381–422, 1999.

[11] J. J. Labrosse. Microc/OS-II. R & D Books, 1998.
[12] D. Lea. A java fork/join framework. In Proceedings of the ACM 2000

conference on Java Grande, pages 36–43. ACM, 2000.
[13] J. Lee, C. Nicopoulos, H. G. Lee, S. Panth, S. K. Lim, and J. Kim. Isonet:

Hardware-based job queue management for many-core architectures.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
21(6):1080–1093, 2013.

[14] L. Lindh. Fastchart-a fast time deterministic cpu and hardware based
real-time-kernel. In Real Time Systems, 1991. Proceedings., Euromi-
cro’91 Workshop on, pages 36–40. IEEE, 1991.

[15] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, and
Z. Wang. A noc traffic suite based on real applications. In VLSI
(ISVLSI), IEEE Computer Society Annual Symposium on, pages 66–71.
IEEE, 2011.

[16] V. Nollet, D. Verkest, and H. Corporaal. A safari through the mpsoc
run-time management jungle. Journal of Signal Processing Systems,
60(2):251–268, 2010.

[17] M. Ojail, R. David, Y. Lhuillier, and A. Guerre. Artm: a lightweight
fork-join framework for many-core embedded systems. In Conference
on Design, Automation and Test in Europe, DATE, pages 1510–1515.
EDA Consortium, 2013.

[18] P. Reble, S. Lankes, F. Zeitz, and T. Bemmerl. Evaluation of hardware
synchronization support of the scc many-core processor. In 4th USENIX
Workshop on Hot Topics in Parallelism (HotPar 12), Berkeley, CA, USA,
2012.

[19] S. Rhoads. Plasma-most mips i (tm) opcodes: overview. Internet:
http://opencores. org/project, plasma [May 2, 2012], 2006.

[20] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on
multi/many-core systems: survey of current and emerging trends. In
50th Annual Design Automation Conference (DAC). ACM, 2013.

[21] O. Sinnen. Task scheduling for parallel systems, volume 60. John Wiley
& Sons, 2007.

[22] M. Sjalander, A. Terechko, and M. Duranton. A look-ahead task
management unit for embedded multi-core architectures. In Digital
System Design Architectures, Methods and Tools, 2008. DSD’08. 11th
EUROMICRO Conference on, pages 149–157. IEEE, 2008.

[23] F. Thabet, Y. Lhuillier, C. Andriamisaina, J.-M. Philippe, and R. David.
An efficient and flexible hardware support for accelerating synchro-
nization operations on the sthorm many-core architecture. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2013,
pages 531–534. IEEE, 2013.

