
A Transaction-Level Framework for Design-Space

Exploration of Hardware-Enhanced Operating Systems

D. Gregorek

Inst. of Electrodynamics & Microelectron., Univ. of Bremen, Bremen, Germany
Garcia-Ortiz, A.

Abstract

The increasing number of processing elements on embedded many-cores gives novel

challenges for the chip design. Dedicated hardware has become an important feature to

support the applied operating system and to improve the overall system efficiency. Since

evaluation of novel architectures requires time expensive simulations or prototyping,

transaction-level analysis gives an appropriate tool for early design stage evaluation. This

work proposes a transaction-level framework for simulating hardware-enhanced many-

core operating systems. The framework allows the design space exploration of the

hardware and software architecture and uses a trace-based task description language

including a customized interface for system calls.

Published in:

System-on-Chip (SoC), 2014 International Symposium on

Date of Conference: 28-29 Oct 2014

Page(s): 1 - 4

INSPEC Accession Number: 14790590

Conference Location : Tampere

DOI: 10.1109/ISSOC.2014.6972432

Publisher: IEEE

A Transaction-Level Framework
for Design-Space Exploration of

Hardware-Enhanced Operating Systems
Daniel Gregorek, Alberto García-Ortiz

Integrated Digital Systems Group, ITEM, University of Bremen, Germany
{gregorek,agarcia}@item.uni-bremen.de

Abstract— The increasing number of processing elements on
embedded many-cores gives novel challenges for the chip design.
Dedicated hardware has become an important feature to support
the applied operating system and to improve the overall system
efficiency. Since evaluation of novel architectures requires time
expensive simulations or prototyping, transaction-level analysis
gives an appropriate tool for early design stage evaluation.

This work proposes a transaction-level framework for sim-
ulating hardware-enhanced many-core operating systems. The
framework allows the design space exploration of the hardware
and software architecture and uses a trace-based task description
language including a customized interface for system calls.

Index Terms—transaction-level, hardware operating system,
trace-driven simulation, design space exploration

I. INTRODUCTION

The emerging many-core architectures demand for a scal-
able design of the applied operating system. The OS has
to bring the dynamic requirements of the user applications
into accordance with the monitored state of the chip. The
demands for high-performance, low-power and deterministic
computation time advice for hardware implemented solutions
of the operating system. It is predicted that hardware support
for run-time system management will attain into mainstream
for many-core platforms [1]. Especially for embedded systems,
where low-power is a crucial design constraint, the OS-
specific implementation of hardware accelerators can become
necessary.

To address the aforementioned challenges, different archi-
tectural approaches for the dedicated hardware of the operating
system have been reported in the literature. Centralized ap-
proaches have been shown to have drawbacks in terms of the
scalability for the on-line computation with an increasingly
large number of cores [2]. Also, traffic hot-spots become a
bottleneck for such designs. On the other hand, the overhead
introduced by a fully-distributed approach can supersede the
potential benefits [3]. As a consequence, choosing the right
granularity for the dedicated on-chip hardware supporting the
OS remains an insisting optimization problem.

The design space exploration for systems with many cores
usually requires long simulations runs. It is therefore appro-
priate to apply an computationally efficient transaction-level
model for architecture characterization at the early design
stage [4]. Further, trace-based task description is a well known
and long-used technique [5] to characterize the behavior of

a user task in an abstract manner. This paper is about a
transaction-level framework for the exploration of hardware-
enhanced operating systems on many-core platforms and con-
tains the following contributions:

1) A parametric simulation model for the exploration of a
hardware-enhanced operating system architecture

2) A customized trace description language including
a system-call interface

The remainder of this paper is organized as follows: In
Section II we describe the implemented transaction-level sim-
ulation model. In Section III we present our customized trace-
description language. Section IV shows experimental results,
Section V discusses related work, and finally Section VI con-
cludes the paper.

II. SYSTEM MODEL

Our approach for the improvement of parallel comput-
ing performance is the application of a dedicated hardware
infrastructure for operating systems. We therefore work on
the development and evaluation of an on-chip network to
accelerate the operating system services. The network uses
message passing for communication between the dedicated OS
hardware nodes. The messages have a header and one or more
32-Bit data fields. Fig. 1 displays the structure of a message.
The header contains the message type (type), at least the
source address (src), the priority (prio) and a broadcast flag
(flag). The actual size of the message header depends on the
message type and the hardware configuration (i.e. number of
nodes/address width).

type src dst prio flag data

Figure 1: Message structure: Header + Data

We implemented a parametric SystemC model based on
the TLM-2.0 library. An exemplary parametric architecture
is given in Fig. 2. A set of dedicated global management
nodes is connected by a global interconnect. Each global
node controls a cluster of local nodes. Each local node
contains a local controller and a common processing element.
The communication between the dedicated hardware nodes
is strictly message based. Each message is encapsulated in-
side a TLM generic payload. As a baseline we assume a
homogeneous many-core processor (PEs drawn hatched). A

Figure 2: Outline of the parametric system model for the
dedicated OS infrastructure having k global nodes (resp.
clusters), and m processing elements.

common interconnect between the processing elements is left
out for better readability. The model applies a transaction-level
methodology using TLM-2.0 sockets and blocking transport.
The simulated system has its own address space, although we
partly use the address space of the host computer to achieve
a higher simulation performance.

A. Global Nodes

The global nodes contain dedicated hardware for message
transport, message handling, an OS-specific processor and
private memory. Each of the global nodes runs one instance
of an OS in software. Fig. 3 shows the structure for the
global node. The software OS we use is loosely based on
Micro-C/OS-II [6]. We extended the OS to have basic multi-
core functionality and use a two-step task mapping algorithm.
The first step maps a new task to a cluster, the second step
maps to the local PE. Due to the complexity of the mapping
decision we put special emphasis on that OS service. We
model the delay ts for one mapping step by means of Eqn. (1),
where ν is the number nodes to be searched through and cs
is a timing parameter of our model. The O(log ν) search can
be implemented e.g. by Red-Black Trees [7].

ts = cs · log ν (1)

During message handling and using the OS functionality, a
computation delay is accumulated and charged to the nodes
waiting time. We apply one simulation thread for each global
node. The node operates non-preemptive, each message is
processed completely before the next message is dequeued.

B. Local Nodes

The local nodes are constituted by a local controller and
a processing element (PE). Fig. 4 shows the structure of a

Figure 3: Structure of a global node with message queues,
message transmitter and receiver, a dedicated OS processor
and local memory

local node. The local node is controlled by the messages from
the global manager and can send backwards the system-calls
from the user tasks. The controller instructs the PE to start a
user task, or to do a context switch, by updating the stack-
pointer (stk). The PE is further controlled by the processor
status register (psr) and the program counter (pc). For high
simulation performance, the PE does not contain any general-
purpose register, instead any register access by the user tasks is
handled as an access to the address space of the host computer
(see Sec. III). While the controller may stop the processor
using the interrupt signal (irq), the processor can activate the
controller using the trap signal (trap). The behavior of the
processing element can be described by the following states:

• Idle: Wait for notification
• TDL: Execute trace of user task (see Section III)
• Trap: Signalize trap and wait

Figure 4: Structure of a local node with message handler
and queues, Hardware-Scheduler, System-Call Dispatcher,
Context-Manager and a processing element. Additionally, we
indicate the interface to a common interconnect (dotted).

C. Interconnect model
In our current work the management interconnects are

implemented as shared buses, but our framework allows to
use other topologies as well. We extended the TLM generic
payload with a priority field and a broadcast flag. For high
simulation performance we apply a single priority queue for
each bus interconnect to determine the next outgoing payload.
The waiting time ti for the TLM payload is approximated by
Eqn. (2), where p indicates the specific priority of the payload.
Broadcast messages are cloned and delivered to any connected
target node.

ti = [volwait(p) + volmssg] /buswidth (2)

III. TRACE DESCRIPTION LANGUAGE

To model the behavior of user tasks we developed a cus-
tomized task/trace description language (TDL). The goal of
the language is to provide a flexible possibility to abstract
the characteristics of user applications including an interface
for system calls. TDL is directly interpreted by the processing
elements. A reference about the implemented TDL instructions
is given in Tab. I. Vital element is the tdl_wait instruction
which models the waiting time of the user task and therefore
blocks the PE. Memory accesses also induce a waiting time,
depending on the returned delay from the interconnect.

Table I: TDL instructions

Name Args. Description
tdl_wait time wait for given time
tdl_sysc type + args. call operating system
tdl_memr addr, size read from memory and wait
tdl_memw addr, size write to memory and wait
tdl_calc in1, op, in2 arithmetic
tdl_copy src, dst copy content of register
tdl_bnez value, addr branch not equal zero

The system-call interface, address arithmetic and loop coun-
ters heavily depend on register accesses. Since the PE model
does not contain user registers, TDL includes the capability
to read and write into virtual registers. The register names are
given by specific TDL labels shown in Tab. II. Each user task
has its own context (resp. set of virtual TDL registers) which
is stored inside the address space of the host computer. The
register tdl_reg_wait is hidden to the user task and stores
the currently charged waiting time of the task.

Table II: Virtual TDL registers

name description
tdl_reg_sysc System call type
tdl_reg_arg0 System call arg0
tdl_reg_arg1 System call arg1
tdl_reg_sval System call return value
tdl_reg_dptr Data pointer
tdl_reg_loop Loop counter
tdl_reg_wait charged wait time

The system-calls, which we apply throughout this paper
are explained in Tab. III. We use a customized join/barrier
mechanism to synchronize a parallel application. To reduce
the run-time number of system-calls, a child task is allowed
to exit immediately, when calling os_join_exit.

IV. EVALUATION

Our primary criterion for architecture evaluation is the
throughput time (response time) tr of an parallel user ap-
plication. We measure the speedup S as the ratio of the
sequential throughput time tr,seq versus the achievable parallel
throughput time tr,par. Having n independent user tasks of
equal length l and m processing elements, the maximal achiev-
able speedup is limited by a temporal management overhead
Ω(m,n) as shown in Eqn. (3):

S =
tr,seq
tr,par

=
n · l
tr,par

=
n · l

dn/me · l + Ω(m,n)
(3)

Table III: System calls

Name in out Description
os_prog_spwn imem,

dmem
Spawn new user task with given
instruction- and data-memory
addresses

os_prog_exit Terminate task
os_join_init count addr. Initialize join barrier with given

count and return address to user
os_join_free addr. Free join barrier from memory
os_join_wait addr. Let task wait until counter is

zero
os_join_exit addr. Decrement counter and termi-

nate task

 50

 60

 70

 80

 90

 100

 110

 120

 130

 1 2 4 8 16 32 64 128 256

S
p
e
e
d
u
p

Number of management nodes k

cs=0
cs=1
cs=2
cs=4
cs=8
cs=12
cs=16
cs=20
cs=24
cs=28
cs=32

Figure 5: Analytic speedup model versus the number of global
nodes k. Different values for the coefficient cs are given for
mapping n = 127 user tasks to m = 256 PEs

We approximate an overhead Ω ≈ Ωmap due to task map-
ping depending on m, n and the number of global nodes k.
Assuming a temporal overhead given by Eqn. (1) for each
step of our task mapping algorithm (Ωmap = ts,1 + ts,2),
we constitute Ωmap(m,n, k) as the accumulated delay of the
two mapping steps in Eqn. (4). The diagram of the expected
speedup S(m,n, k) using Ω = Ωmap and different values for
the coefficient cs is shown in Fig. 5.

Ωmap(m,n, k) =

map global︷ ︸︸ ︷
n · cs · log k+

map local︷ ︸︸ ︷
n

k
· cs · log

(m
k

)
(4)

In the following we want to test our analytic model by
means of the transaction-level framework. Table IV gives the
default parameters for our simulation model. We use the
trace-description language TDL to model a synthetic parallel
benchmark. In the experiment we include interference between
two competing applications. The applications have an inter-
arrival time λ, which is Poisson distributed and has a mean
value of λ = 7999 Ticks. Each application contains n = 127
independent child tasks of equal length l = 16000 Ticks. The
parallel tasks are synchronized using the system-calls given
in Tab. III. The stimulus is injected directly into the message
queue of a randomly chosen global node.

Table IV: Default Parameters

Name Value
Number of processing elements m 256
Global bus width 32 bit
Local bus width 32 bit
Message receive delay 4 Ticks
Message transmit delay 4 Ticks
Simulation length 1e7 Ticks

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 1 2 4 8 16 32 64 128 256

S
p

e
e

d
u

p

Number of management nodes k

cs=0
cs=1
cs=2
cs=4
cs=8
cs=12
cs=16
cs=20
cs=24
cs=28
cs=32

Figure 6: Measured speedup versus the number of manage-
ment nodes k. Different values for the coefficient cs are given
for mapping n = 127 user tasks to m = 256 PEs

The quality of the measured speedup S in Fig. 6 fits to our
analytic model and emphasizes the significant impact of the
applied mapping algorithm to the overall system performance.
The simulations confirm an optimum for the number of
global nodes. The quantity of the measured speedup S is
slightly smaller compared to the analytic model because of
the additional OS communication overhead.

Values for the required simulation time, depending on the
number of PEs and the number of stimulus iterations, are
given in Tab. V. The simulations were run using an Intel-
Celeron-M R© processor at 1.40GHz having a 1024kB cache.
Simulating one point in the design-space usually required less
than a minute. A profiling analysis revealed that string parsing
of the TDL instructions is a bottleneck for the simulation
performance. As a follow-up, we plan to develop a TDL
assembler and to compare our hardware-enhanced OS to a
common software OS. We therefore extend the PE model and
the trace description language TDL to include the capability
to emulate a common software OS at the processing elements.

Table V: Simulation time in seconds. Each iteration of the
stimulus contains n = m child tasks

Number of
PEs m

Iterations
1 10 20 40 80

64 0.11s 0.96s 1.98s 3.91s 7.56s
128 0.23s 1.98s 3.66s 7.04s 14.38s
256 0.51s 3.52s 7.46s 14.29s 32.68s
512 0.89s 7.68s 13.92s 29.61s 57.67s

V. RELATED WORK

There exist various related works concerning the design-
space exploration of hardware implemented operating sys-
tems. Muller et al. [8] describe a virtual platform for the
hardware/software co-design of a real-time hardware operating
system. Nexus++ uses an application specific circuit resolving
time-critical task dependencies at run-time [9], and applies a
trace-based description of a H.264 benchmark. A distributed
and dedicated hardware approach has been implemented by
Isonet [2]. Isonet applies a fully-distributed network of ded-
icated management nodes for hardware supported load bal-
ancing. According to the authors, Isonet uses its own cycle-
accurate trace-driven simulator to evaluate a configuration
of 1024 cores. However, to our best knowledge none of
the related works provides a publicly available simulation
framework, nor puts a focus on the description of the system-
call interface.

VI. CONCLUSION

We presented a transaction-level framework for the design-
space exploration of a dedicated hardware operating system.
The OS runs parts of its functionality in software and is
enhanced by a hardware-implemented message passing infras-
tructure. We provide a customized trace description language
(TDL) including a system-call interface. For high simulation
performance, parts of the simulated system run inside the
address space of the host computer. We evaluated a proposed
operating system architecture experimentally by means of a
parallel benchmark and compared the measured performance
of the benchmark against an analytic model. The framework
is computationally efficient and allows to quantify the impact
of the operating system architecture to the overall system
performance at an early design-stage.

REFERENCES

[1] V. Nollet, D. Verkest, and H. Corporaal, “A safari through the mpsoc run-
time management jungle,” Journal of Signal Processing Systems, vol. 60,
no. 2, pp. 251–268, 2010.

[2] J. Lee, C. Nicopoulos, H. G. Lee, S. Panth, S. K. Lim, and J. Kim, “Isonet:
Hardware-based job queue management for many-core architectures,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 21, no. 6, pp. 1080–1093, 2013.

[3] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Exploration
of mpsoc monitoring and management systems,” in Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011 6th Interna-
tional Workshop on. IEEE, 2011, pp. 1–3.

[4] T. Wild, A. Herkersdorf, and R. Ohlendorf, “Performance evaluation
for system-on-chip architectures using trace-based transaction level sim-
ulation,” in Design, Automation and Test in Europe, 2006. DATE’06.
Proceedings, vol. 1. IEEE, 2006, pp. 1–6.

[5] E. J. Koldinger, S. J. Eggers, and H. M. Levy, “On the validity of trace-
driven simulation for multiprocessors,” in ACM SIGARCH Computer
Architecture News, vol. 19, no. 3. ACM, 1991, pp. 244–253.

[6] J. J. Labrosse, Microc/OS-II. R & D Books, 1998.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction

to algorithms. MIT press Cambridge, 2001, vol. 2.
[8] F. Muller, F. Muhammad et al., “An embedded, generic and multiproces-

sor hardware operating system,” Design and Architectures for Signal and
Image Processing (DASIP), 2009.

[9] T. Dallou and B. Juurlink, “Hardware-based task dependency resolution
for the starss programming model,” in Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on. IEEE, 2012.

