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Abstract—The agriculture sector is envisioning a revolution
of traditional farming supported by Information and Commu-
nications Technologies (ICT) and Cloud Computing is one of
them. This tendency is called Smart Farming and promises to
boost productivity while reducing production costs and chemical
inputs. Cloud Computing aims to provide the necessary resources
and the central orchestration of all devices involved in a Smart
Farming scenario. To achieve high scalability, usability and
performance in Cloud-based applications, we have to move
from a monolithic development approach to microservices ar-
chitecture using cutting edge technologies like containerisation.
This paper presents a Smart Farming application based on
Cloud Computing that promises to provide useful information
to agronomists and farmers to support their decisions based
on measurements from ground sensors and images captured
from UAVs or ground cameras. Our implementation is based
on microservices architecture using Docker Containers as the
virtualisation technology. Each microservice runs on a different
container and communicates through a RESTful API interface.
The proposed architecture is highly scalable in future upgrades
and promises high performance and security.

Index Terms—Smart Farming, Cloud Computing, Microser-
vices, Containerisation

I. INTRODUCTION

Information and Communications Technologies (ICT) are
involved in many different domains of modern life. One
of them is Smart Farming, the new term in the agriculture
sector. The integration of ICT with Smart Farming promises
to bring many benefits in the following years. Increasing the
productivity of the cultivation, improving the quality of the
final product, decreasing the cost of production, reducing the
chemical inputs, and reducing the labour effort are the most
important aspects of this integration [1].

The primary ICTs used in Smart Farming are Unmanned
Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs),

Wireless Sensor Networks (WSNs), Big Data and Cloud
Computing. Data captured from UAVs flying over the fields
promise to provide relevant information regarding the cultiva-
tion status. This information is used to identify diseases or
the stress of the cultivation or to predict yield production.
Thus, they can be a valuable tool as they can provide input
for Decision Support Systems (DSS) and assist agronomists
and farmers with their actions on the field. UGVs can use
computer vision to navigate autonomously in the cultivation
and accomplish tasks like harvesting, monitoring, spraying,
or weeding. Although this technology has to overcome many
obstacles, shortly, UGVs will be able to operate continu-
ously with accuracy and without human intervention, reducing
labour effort.

Recent WSNs technologies promise to offer the commu-
nication channel between all involved devices, like UAVs,
UGVs or sensors deployed on the field. Most Smart Farming
applications require periodically taking measurements from
ground sensors and transmitting them over long distances.
Therefore, WSNs that promise transmission in long distances
while reducing energy consumption for end nodes are of
paramount importance. LoRa, SigFox and NB-IoT are three of
the recent WSNs technologies that can meet such requirements
[2]. Moreover, the massive amount of data produced by the
enormous amount of sensors in large scale scenarios, along
with data captured from UAVs and UGVs, make the role
of Big Data analytics important. This analysis can extract
valuable information and help agronomists and farmers to
improve productivity [3].

Finally, Cloud Computing plays a critical role in orchestrat-
ing all involved devices, especially when the supported Smart
Farming deployment covers large areas. Theoretically, it offers
an unlimited amount of computational and storage resources



suitable to accomplish every demanding task. Particularly in
Big Data analytics scenarios, these features are of paramount
importance, giving Cloud Computing an indispensable role in
Smart Farming [4]. In addition, high availability and acces-
sibility are two key aspects of Cloud Computing that every
farmer and agronomist would appreciate.

Although many applications already exist to support farmers
and agronomists, few are based on Cloud Computing. Recent
trends for web-based applications lead to Cloud Computing
solutions when high availability and high computational re-
sources are essential. Furthermore, to achieve high scalability
and upgradability, Microservice Architecture (MSA) seems
more suitable than Monolithic Architecture (MA) or Service
Oriented Architecture (SOA), as MSA is proper to quickly
develop large and complex systems [5]. More specifically,
MSA constitutes a newly introduced concept that promises
many advantages in software development where each mi-
croservice implements a specific service, can be deployed
and upgraded independently and communicates with a simple
interface with other microservices. However, such an approach
needs virtualisation technology to isolate each microservice.
Docker Containers is a popular virtualisation solution based
on containers, offering easy deployment, no conflicts in depen-
dencies and little need for the configuration of each container.
In [6] the authors present a research prototype of an MSA
aiming to overcome the limits of existing IoT platforms in the
Cloud.

In this paper, we present a Cloud Computing web-based
application suitable to provide real-time information to end-
users. In more detail, it provides measurements from ground
sensors and images captured from UAVs or ground cameras.
Furthermore, the appropriate vegetation indices and machine
learning algorithms intend to extract useful information. The
application is intended as a Decision Support System for
agronomists and farmers to help them with their decisions. The
application’s development is based on microservices architec-
ture using Docker Containers as the virtualisation method.

The remaining of this paper is organised as follows: In
Section II, we give a brief analysis of Microservices Archi-
tecture compared to other approaches. In Section III, we are
providing information about the Smart Farming scenario and
the hardware setup used for all of the involved devices in
our deployment. In Section IV, we are analysing the proposed
software architecture for the implementation of the web-based
application. In Section V, we present the main features of the
web-based application, and finally, Section VI concludes this
paper.

II. MICROSERVICES ARCHITECTURE

For the implementation of our Smart Farming applica-
tion, we are following the Microservices Architecture (MSA),
which offers some benefits compared to the Monolithic Ar-
chitecture (MA), and Service Oriented Architecture (SOA)
[7], [8], [9]. Since now, many of the developed applications
have been built with the monolithic approach. In this case,
an application is built upon different components which are

interdependent. This approach brings some obstacles when an
application starts to grow. More specifically, the development
is easier in the initial stage, but when it starts to grow by
adding new features or upgrading existing ones, it is harder
to implement [5]. In addition, new developers need extra time
to get familiar with the existing code before starting to be
efficient. SOA solves some of these issues by introducing
the idea of services, which are independent components that
communicate through a common interface called Enterprise
Service Bus (ESB). However, MSA moves one step beyond by
breaking services into smaller parts, and the communication
occurs through RESTful APIs. Many researchers argue that
MSA is the evolution of SOA [10], but it seems that they
have some differences [8].

In essence, MSA offers many advantages in large scale ap-
plications. Although it is more demanding on the development
in the first stages, it is safer when they scale as each part of
the application runs independently. Thus, we can upgrade each
microservice apart from the other. Moreover, it promotes code
usability, as code segmentation in smaller parts makes it easier
to find which ones can be reused in different tasks. In addition,
we can select the most appropriate programming language
for each microservice, which results in faster development
and faster response times. Finally, when more resources are
needed, it is easier to scale only those microservices that
need them than scaling the whole infrastructure in the case
of the monolithic application. To summarise, compared to
the MA approach, some advantages of MSA are scalability,
upgradability, and code reuse.

III. EXPERIMENTAL SETUP AND HARDWARE
ARCHITECTURE

The experimental areas are located in the region of Western
Macedonia, Greece. Five different areas with cultivation are
included at the prefectures of Kozani and Grevena. The
covered area is around 6.200 acres in total, with crops such
as cherry trees, peach trees, apple trees, wheat, and lentils.
More specifically, two areas are located in the prefecture of
Kozani, namely Bravas with 1.220 acres and Gratsanis with
1230 acres. The main crop in both of these areas is peach
trees. In addition, three areas are located in the prefecture
of Grevena. Amygdalies has 1.350 acres containing various
crops like cereals (wheat, barley, oats, rye, corn), legumes
(chickpeas, beans, lentils), and cherry trees. Klimataki has 850
acres and contains various cereals (wheat, barley, oats, rye,
corn) and legumes (chickpeas, beans, and lentils). Finally, the
area of Itea has 1.550 acres containing cereal crops (wheat,
barley, oats, rye, corn) and legumes (chickpeas, beans, lentils).

Regular flights from UAVs take place throughout the year,
capturing images from all areas. We use the UAV eBee X from
SenseFly for the flights, which is a fixed-wing model able for a
continuous flight of up to 90 minutes, covering approximately
1.200 acres at the height of 400 feet. In addition, it can
carry a range of groundbreaking cameras that makes it proper
for a wide range of applications like surveying, mapping,
engineering, environmental monitoring and agriculture. In our



deployment, we are using the multispectral camera Parrot
Sequoia+, capable of capturing images in RGB, and in other
four bands, GREEN (550nm ± 40nm), RED (660nm ± 40nm),
Red Edge (735nm ± 10nm), and Near Infrared (NIR) (790nm
± 40nm). Furthermore, when the agronomists identify possible
diseases of an area after examining the images from UAVs,
photos from the ground are captured with the same camera
for more thorough research.

We use Pix4D Studio to process captured photos before up-
loading them to the web-based application. More specifically,
we use Pix4D Studio to concatenate all captured photos and
create an orthomosaic image representing the entire flight area.
Finally, this image is used in our implementation to generate
the vegetation indices and apply machine learning algorithms
to extract useful information for agronomists and farmers.

Furthermore, sensors have been deployed in the monitoring
areas to measure parameters such as soil moisture in two
different depths (50cm, 20 cm) and soil temperature (40 cm).
We use the model Agriculture Pro from Libelium as the sensor
nodes, equipped with a LoRa module. LoRa is a Low Power
Wireless Area Network (LPWAN) capable of transmitting
messages up to 20 Km in rural areas and up to 5km in
urban areas, with low data rates and low energy consumption.
It is also highly scalable as it can support multiple nodes
per gateway, while adding new gateways to the network
can significantly increase the reliability and the number of
supported devices. Moreover, it is working at 868MHz in the
EU, a free band to use without a license. These features make
it suitable for agriculture applications [11] in which most of
the deployed sensors need to transmit data in long distances
and work without human intervention for a lot of months or
even years.

We use Lorix One as the LoRa gateway, with a 4.15 dBi
antenna, with the chipset SX1301 from Semtech integrated. It
can receive and demodulate messages from eight channels and
six different Spreading Factors (SF) simultaneously. We have
placed gateways to the areas of interest to receive incoming
packets from the deployed nodes in the cultivation. They
have access to the Internet through the local network and
are configured to transmit messages to The Things Network
(TTN). TTN is an open-source infrastructure that provides all
necessary services to LoRa end-devices. All messages received
in TTN are transmitted to our web-based application on the
Cloud through a RESTfull web service.

Our web-based application is hosted by a virtual machine
in the Cloud, with a Linux Debian 10.7 as the operating
system with 16 GB of RAM and 16 CPU cores. The virtual
machine is located upon the Okeanos-Knossos infrastructure,
the Cloud Service of GRNET, dedicated to the Greek Research
and Academic Community. The infrastructure is scalable to
add extra resources such as storage, memory or CPU cores.
That makes it flexible and able to support more load when it
is needed.

Figure 1 depicts the described hardware architecture.

Fig. 1. Hardware Architecture

IV. SOFTWARE ARCHITECTURE

To implement our web-based application based on MSA,
we use Docker to isolate each microservice in a different
container. Docker is a promising virtualisation technology
based on containers. Compared to virtual machines, it needs
fewer resources as it loads only the necessary binaries and
libraries in each container and not the whole operating system.

In Figure 2, we present the proposed architecture with each
microservice running in a different Docker Container. The
implemented microservices are the Back-End (BE), the Data
Storage (DS), the Identity Manager (IDM), the User Data
Storage (UDS), and the Geospatial Data Storage (GDS). In
the following paragraphs, we give a brief description of each
of them as well as their role in the project.

Fig. 2. Microservices architecture.

Back-End (BE): The Back-End microservice is responsible
for providing a RESTful API to serve the appropriate infor-
mation to end-devices or other infrastructure components, as
it is responsible for interacting with all other microservices.



In more detail, it implements a RESTful API with end-
points for adding, removing or querying measurements from
ground sensors. All incoming data are sent to the Data Storage
microservice to store them for future usage. Furthermore,
another part of BE is responsible for uploading images from
UAVs flights or images from ground cameras. The incoming
images are sent to Geospatial Data Storage microservice to
store them for later usage. Finally, when a user tries to log
in, BE is responsible for sending the request to the Identity
Manager microservice to authorise him to log in.

For the implementation of the BE microservice, we are
using NodeJS wrapped in a Docker Container. NodeJS is a
Javascript runtime environment suitable to run scalable web
applications. It is one of the most used back-end technologies
supporting dynamic web-based applications and offering fast
response times, with an asynchronous response if needed. It
is open-source and working in multiple platforms providing
numerous modules for every purpose.

Data Storage (DS): In Smart Farming applications, an enor-
mous amount of data originates from heterogeneous sources.
In our experimental setup, we have images captured from
UAVs and images taken from the ground. All of these images
are uploaded in the Cloud, while additional information about
the area, date, and time of the flight is stored in the database.
Additionally, ground sensors deployed in the field are contin-
uously sending their measurements through the LoRa wireless
network. All of these types of data are proper for document-
based data stores.

We have chosen MongoDB for this service as it is one of
the most suitable solutions for document-based data stores.
MongoDB uses BSON (Binary JSON) to store data, an exten-
sion of JSON (JavaScript Object Notation), that uses a binary
structure encoding and offers faster parse times. Also, BJSON
has extended to support additional data types such as dates and
binary data, which are not supported by the JSON format.
JSON is an open standard for data interchange that uses a
human-readable format. In our implementation, JSON is used
to describe the sensors’ measurements, and the data describe
each of the captured images from UAVs or ground cameras.

Identity Manager (IDM): A reliable and secure service for
user authentication is always crucial in Cloud Computing
deployments. To avoid building a new service from scratch, we
have selected to use a reliable open-source solution working
out-of-the-box, including rich features. Thus, we are using
FIWARE Keyrock, an identity manager offering management
for users, organisations, and applications. All functions are
available through a RESTful API interface that makes it simple
to integrate with our BE microservice. FIWARE Keyrock
needs a MySQL database to store all necessary information
for user authentication. For that reason, we use MySQL as a
database in the User Data Storage microservice.

User Data Storage (UDS): The purpose of the User Data
Storage microservice is to store users’ credentials in order
to authorise them to log in and use the web-based applica-
tion.This microservice communicates directly with the Identity
Manager microservice in order to store all the appropriate

information regarding users, organisations and applications as
described before.

MySQL wrapped in a Docker container is used as a database
to store users’ credentials. It is an open-source Relational
Database Management System (RDBMS) widely used in web-
based applications.

Geospatial Data Storage (GDS): Captured images from
UAVs are not suitable to be displayed directly in a web-
based application. We first need to georeference them in order
to display them in the correct position over a map of the
GIS. Besides, captured images have potentially large sizes,
making it difficult to handle through an internet connection
and display them directly in a web browser. Thus, we need
a method to break them into small parts, each of them
corresponding to specific geographical coordination and at a
particular zoom level. Web Map Tile Service (WMTS) is a
convenient service that can efficiently render and serve large
georeferenced images over the web.

For this microservice, we have selected to use the
GeoServer, an open-source geospatial data sharing service
able to handle large geospatial images or other information
from heterogeneous sources. It comes with a web interface for
configuration, but its functionalities are also available through
a RESTful API. In addition, it supports the most popular
services for geospatial data, such as the Web Map Service
(WMS), Web Coverage Service (WCS), Web Feature Service
(WFS) and Web Map Tile Service (WMTS).

Application Logic (AL) : This microservice includes the
implementation of the machine learning algorithms and other
functionalities of the application. For example, it is used to
calculate several vegetation indices, which show various crop
health parameters. In addition, AL is responsible for raising
an alert and notifying agronomists and farmers when the
parameters from the ground sensors are out of the specified
bounds. Finally, machine learning algorithms are implemented
in AL, giving more accurate advice about the cultivation’s
status. We use Python as the programming language in this
microservice, and all required dependencies are installed at
the build time.

Docker containers are interconnected via a virtual network
set up at the initialisation stage. Besides, the communication
between microservices occurs through a RESTful API. For
example, when the BE microservice needs to authorise a user,
it sends a request to IDM microservice through the RESTful
API interface. In addition, when the BE microservice needs to
retrieve the orthomosaic images from the flights of the specific
area, it sends a specific request to the GDS microservice.

V. PRESENTATION

Our implementation focuses on data aggregation from
ground sensors, images captured from UAVs, or images cap-
tured from the ground. After the stage of data processing, the
web-based GIS application visualize the available information
to help agronomists and farmers identify possible diseases
and estimate crop production. Figure 3 displays a layout of
our implementation. The left panel shows the corresponding



measurements of the selected ground sensor on the map. More
specifically, it shows measurements for soil moisture in two
different depths (50cm, 20cm) and soil temperature in 40 cm
depth. On top of the left panel, the first graph provides the soil
moisture from both depths, while the second graph provides
the soil temperature.

Fig. 3. Cloud application.

We can see a specific orthomosaic image taken from a UAV
by selecting it from the dropdown list on the right. Images can
be in RGB format or display a particular vegetation index.
For the example, in Figure 3 we see an NDVI image from
the specified area produced by the NIR and Red channel.
More specifically, an NDVI image is a pseudocolour image,
where green areas indicate healthy crops and red or yellow
areas indicate the unhealthy, which could be due to stress
or disease of the cultivation. Apart from NDVI, the users
can observe other vegetation indices like GNDVI (Green
Normalized Difference Vegetation Index), NDRE (Normalized
Difference Red Edge), SAVI (Soil Adjusted Vegetation Index).

We have three different groups of users, each one with
different roles. The first group includes user administrators
responsible for system administration, such as system main-
tenance, system resources monitoring, and images uploading
from UAVs or ground cameras. In addition, they have the
responsibility to create or delete authorised users. The second
group corresponds to agronomists, who are liable for evaluat-
ing the captured images from UAVs or ground cameras and
the data from the sensors. Finally, the third group is related
to the farmers who have access to the platform to observe the
available information for their cultivation.

VI. CONCLUSION

Supporting Smart Farming with ICT technologies can lever-
age productivity and reduce cost production. One of these
technologies is Cloud Computing and it can play a vital role to
support the whole infrastructure. It is able to support the huge
amount of end devices, orchestrate them and offer a plethora
of computational and storage resources. In addition, the enor-
mous amount of data needs high processing capabilities in
order to extract useful information based on machine learning
algorithms.

Until now, a monolithic web-based application was able
to fulfil these requirements of the implementation. However,

when more than a few services are required, we have to adopt
an alternative approach called Microservices Architecture that
can overcome the obstacles that large deployments bring.

This paper presents a web-based application for Cloud
Computing built with the concept of MSA and promising high
scalability, upgradability and security. Our implementation
uses Docker Containers as the virtualisation technology to
isolate each microservice. Moreover, communication between
microservices occurs through a RESTfull interface.

The developed web-based application provides useful in-
formation to agriculturists and farmers from heterogeneous
sources like images captured from UAVs or ground cameras
and measurements from ground sensors. In the future, we are
intending to enrich it with more features like measurements
from weather stations and additional machine learning algo-
rithms for stress or disease detection.
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