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Abstract — FSO communications constantly flourish, 

because of the numerous efficient and economic benefits, 

highlighted by many researchers and exploited by many 

manufacturers; however, FSO channels are not free of various 

performance limitations. This work concerns FSO links’ 

availability estimation by taking into account both, the 

propagation into a dispersive media and the time jitter 

influence. Particularly, the truncated normal distribution has 

been used in order to investigate the time jitter effect on 

chirped longitudinal Gaussian pulses. The links’ performance 

is presented in terms of either probability of fade or outage 

probability, in closed form mathematical expressions. The 

work is concluded with the corresponding numerical results 

and inferences, using typical and realistic parameters of 

operating FSO systems.  
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I. INTRODUCTION 

Free space optical (FSO) communications links are 
cheaply installed and operate without purchasing a license, 
supporting very high data rate communications, securely [1]–
[14]. However, FSO channels are not free of various 
limitations on the availability and the overall performance of 
the systems, depending on both the channel’s current 
atmospheric conditions and the link’s specifications, such as 
the bit rate and the link length. Since, contemporary 
communications require very high data rates hence shorter 
pulses and longer links, implying long-lasting propagations 
accompanied by many, accumulated, acting physical 
phenomena which should be taken into account. For this 
reason, we investigate the FSO pulse propagation under the 
action of the group velocity dispersion (GVD) and the time 
jitter (TJ) effects.  

Due to the dispersive media, the GVD is responsible for 
changes in the shape of the longitudinal pulses during 
propagation through the atmospheric path, [15], [16], and its 
influence is stronger as the link length is getting longer and 
the data rate higher. This is because the broadened pulses 
may exceed their dedicated time slots, interfering with 
adjacent slots, i.e. inter-symbol interference - ISI. On the 
other hand, TJ affects the synchronization between 
transmitters and receivers, as the detection is not performed 
at the peak of the pulse, due to the beam scattering, the 
multipath, the detection delays and any other reason that 
could trigger a desynchronization between transmitter and 
receiver. Strong TJ effects may cause severe misdetections, 
even involving adjacent time slots, inducing bit flips along 

the bit stream [17]–[20]. Obviously, the shorter the time slot, 
i.e. faster bit rate, the stronger the influence of TJ effect. Bit 
misdetections due to strong TJ effect have thoroughly been 
studied in [21].  In this work, we study the joint influence of 
GVD and TJ effects, for weak to moderate time jitter which 
causes misedetections within a range of one time slot, in 
order to estimate the average irradiance and the outage 
performance of the system. Another effect which has been 
studied thoroughly [1]-[14] and affects significantly the 
system’s performance is the scintillation. Its influence could 
be studied jointly with the above mentioned effects but it is 
beyond the scope of this work.   

The remainder of this work is arranged in the following 
order: section II hosts the main aspects of the channel model, 
including the GVD and TJ estimation analysis, in section III 
the system’s expected irradiance is estimated along with the 
Probability of Fade (PoF) and the Outage Probability (OP), 
while section IV illustrates the corresponding numerical 
results, using typical parameters of operating FSO systems, 
ending up with some interesting conclusions in Section V. 

II. CHANNEL MODEL 

The optical pulse, of the FSO link under consideration, 
propagates through the dispersive and turbulent atmosphere 
with additive white Gaussian noise (AWGN), n~ , zero mean 

value and variance, 20

2
NN =σ . The channel is considered as 

memoryless, ergodic and stationary, with independent and 
identically distributed (i.i.d.) intensity fading statistics, so 
that the received, electrical signal, �, is formulated as: 

 nxsy ~+=  (1) 

where x represents the modulated binary signal, i.e. “0” or 
“1” bit, and s=ηI denotes the instantaneous beam intensity, 
with η and I being the effective photo-current conversion 
ratio of the receiver and the normalized irradiance of the 
signal, [22]. 

A. GVD effect estimation 

In general, the refractive index of any medium depends 
on the wavelength of the propagating signal, affecting the 
speed of each spectral component, resulting in a pulse 
spread. In order to evaluate this effect, the refractive index, 
n(λ), should be estimated as a function of the link 
characteristics, [15], [23], [24]: 
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where λ is the operating wavelength in μm, Ph is the 

atmospheric pressure ( )
5.256

6 32.23 10 44.41 10hP h− −= ⋅ −  in 

mbars, Th is the atmospheric temperature in K and has the 
form 3288.19 6.49 10hT h

−= − ⋅ , as a function of the altitude, h 

in meters. Thus, the GVD parameter is given as, [15], [16]: 
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assuming that ( ) 62 10ω πυ λ=  in rad/s, with υ being the 

speed of light in the medium in m/s. 

Furthermore, by assuming longitudinal chirped Gaussian 
pulse’s envelope, its normalized amplitude after distance z is, 
[16], [25]: 
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where T0 represents the pulse’s half-width at the 1/e intensity 
point, C stands for the chirp effect, T is the retarded time, 
representing a time frame of the pulse propagating along the 
pulse with the group velocity with Τ=0 corresponding to the 
pulse’s center, [26]. Finally, the instantaneous, normalized 

irradiance at the receiver, 
2

,TzUI = , is then given as: 

 ( )ATBI 2exp −=  (5) 

where ( ) 22

2

22

02

2

0 12 zCTzCTA ββ +++= −  is the squared 

pulsewidth and ( )[ ] 2122

2

24
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corresponds to the maximum normalized irradiance’s 

amplitude. 

Furthermore, in case of negatively chirped pulses, the 
formula above implies the existence of a critical distance, zc1, 
where the irradiance is maximized, given by [26]: 
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Also, it is worth noting of another critical distance, zc2=2zc1, 
where the decreasing instantaneous irradiance is equal to the 
initial irradiance, so that 

0,0,0 2czTz II ===
[26]. 

B. TJ effect estimation 

Assuming that the TJ could be statistically described by 
the truncated normal distribution, [26], with mean value �� 
and variance 2

Tσ , the corresponding probability density 

function (PDF) is given as: 
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where ( ) ( )[ ]{ }TTiT Terf
i

σµ 215.0 −+=Φ  for i=1,2. 

From (5), the value of � could be obtained as: 

 ( )jIBAT /ln±=  (8) 

and using the random variable (RV) transformation, the 
resulting PDF as a function of Ij  is given as: 
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Finally the PDF of ��, caused by the GVD and the TJ 
effect, is obtained by:  
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where 
12 TTZ Φ−Φ= . Note that normalized irradiance, Ij, 

ranges between the maximum value B and the minimum 
value ( )[ ]ATBI slj 4exp 2

0, −= , corresponding to the 

normalized irradiance at both edges of the time slot, 

2slTT ±= . 

III. LINK PERFORMANCE 

The receiver’s instantaneous electrical signal-to-noise 
ratio (SNR), ( ) 0

2
NI jj ηγ = , is perpetually fluctuating, 

owing to the beam’s propagation through the atmosphere. 
The average electrical SNR, is given as [ ]( ) 0

2
NIE jj ηγ = , 

with E[Ij] being the expecting value of Ij, [27], [28]. For 
simplicity, in the following analysis it is assumed that, 

0=Tµ , i.e. symmetrical distributed normalized irradiance 

around pulse’s center. 

A. Expected Irradiance estimation 

The expected value of Ij, is estimated as [29]: 
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Next, using Eq. (10) and a variable transformation

( )jIBAy ln= , the above integral gives:  
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where AT +=Θ 24σ . 

B. Probability of fade estimation 

The PoF corresponds to the probability of a critical drop-
off below a sensitivity threshold in terms of receiving 

irradiance, 
thjI ,

, and is given as, [26]: 

 ( ) ( )=≡
thj

jj

I

jjIthjIfade dIIfIFP

,

0

,
 (13) 

where ( ),jI j thF I  stands for the corresponding cumulative 

density function (CDF). The integral of (13) concludes to: 
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where AT +=Λ 22σ . 
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C. Outage probability estimation 

OP shows the critical drop-off below a specific threshold 
in terms of receiving instantaneous SNR and is given as, [28]: 
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IV. NUMERICAL RESULTS 

In this section the availability of an FSO system with 
longitudinal Gaussian pulses is estimated through Eqs (14) 
and (16), taking into account both the TJ and the GVD 
effects, and the corresponding outcomes are presented. 
Supposing a typical wireless optical link of 10Gbps, 
operating at 1.55μm, 30m above the earth surface, with 
σT=7ps, pulsewidthT0 equal to either 3 or 5 ps and chirp 
parameter, C=20 or -20. 

Figure 1 illustrates the PoF of a chirped pulse versus the 
value of the normalized irradiance threshold, probed at both 
critical distances, zc1 and zc2=2zc1, for each case. It should be 
mentioned here that the values of zc1 and zc2 depend on the 
pulsewidth. In general, the PoF declines as the normalized 
irradiance threshold gets lower, in any studied case. Focusing 
on cases with opposite chirp parameter, it turns out that the 
corresponding curves are intersected in Ith values which are 
higher for the cases at z=zc2 comparing with those at z=zc1. 

 

 

Fig. 1. Probability of fade as a function of the normalized irradiance 
threshold, for standard bit rate and TJ effect, with various T0 values and 
opposite chirp parameter, C, probed at both critical distances, zc1 and zc2. 

 

Fig. 2. Outage probability as a function of the expected SNR, probed at 
critical distance zc1, for standard bit rate and TJ effect, with various T0 
parameter, SNR thresholds and opposite chirp parameters. 

In Figure 2, the OP is estimated as a function of the 
expected SNR for z=zc1 and two SNR thresholds, i.e. -10 dB 
and -20 dB. In all cases, OP decreases as the expected SNR 
increases, while all cases with SNR threshold -20 dB are 
less probable to be appeared, compared to those of -10 dB 
threshold. 

V. CONCLUSIONS 

In this work, the FSO link outage performance is 
investigated, assuming longitudinal Gaussian pulses under 
the action of TJ and GVD effects. The TJ is studied through 
the truncated normal distribution model and new 
mathematical expressions are derived for the straightforward 
estimation of the probability of fade and outage probability. 
The obtained expressions have been used in order to 
calculate the outage performance of FSO systems with 
realistic parameter values and their outcomes are presented. 
From the expressions and the figures, it can be seen that the 
chirp effect and the longitudinal pulsewidth affect 
significantly the system’s characteristics and performance.  
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