
Near Data Processing Performance Improvement
Prediction via Metric-Based Workload Classification

Dimitrios Papalekas
Electrical and Computer Engineering

University of Thessaly
Volos, Greece

papaleka@e-ce.uth.gr

Athanasios Tziouvaras
Electrical and Computer Engineering

University of Thessaly
Volos, Greece

attziouv@e-ce.uth.gr

George Floros
Electrical and Computer Engineering

University of Thessaly
Volos, Greece

gefloros@e-ce.uth.gr

Georgios Dimitriou
Informatics and Telecommunications

University of Thessaly
Lamia, Greece

dimitriu@cs.uth.gr

Michael Dossis
Computer Science

University of W. Macedonia
Kastoria, Greece

mdossis@uowm.gr

Georgios Stamoulis
Electrical and Computer Engineering

University of Thessaly
Volos, Greece

georges@e-ce.uth.gr

Abstract—Contrary to the improvement of CPU capabilities,
traditional DRAM evolution faced significant challenges that
render it the main performance bottleneck in contemporary
systems. Data-Intensive applications such as Machine Learning
and Graph Processing algorithms depend on time and energy
consuming transactions between the memory bus and the CPU
caches. The emergence of 3D-Stacked memories that provide a
very high bandwidth led to the exploration of the Process-In-
Memory (PIM) paradigm where logic is added to the memory
die and data are being processed where they reside. To fully
exploit this model, there is a need to methodically determine the
portions of code that are better fitted for Near-Data-Processing
(NDP). To this extend, in this work, after presenting the key
trends of the research field and examine proposed criteria, we
simplify the process of a priori decision of a block’s suitability
by proposing a two-step metric-based application categorization
able to predict the applications behavior when offloaded for NDP.

Index Terms—Near-Data-Processing, Processing-In-Memory,
3D-Stacked memories

I. INTRODUCTION

For decades now, the performance of CPUs has been
improving at a very fast rate, minimizing the energy and time
cost to perform demanding arithmetic operations. To execute
these computations, all the data involved must be located in the
core’s cache memory. Data movement from the main memory
to the processing cores can be up to four orders of magnitudes
slower, hence energy consuming also. Nowadays the datasets
of modern applications are immensely growing, increasing the
need for data movement from the RAM to CPU and thus the
number of cache misses [1].

Traditional DRAM modules failed to scale efficiently in
terms of performance, energy and capacity altogether. As a
result, the focus on computer systems research is to the Near-
Data-Processing (NDP) paradigm [2], [3], that suggest the
processing of data where they reside. Although NDP has
been proposed for more than 50 years recent breakthroughs
such as 3D-stacked memory [4] led to the realization of the
concept. This paradigm aims to facilitate applications that
are characterized by irregular access patterns, little memory
locality and larger working sets [5].

NDP is divided to Processing-Using-Memory (PUM), that
exploits simple bitwise operations in existing memory cells,
and Processing-Near-Memory that integrates a logic layer
directly underneath a 3D-stacked memory. The latter is fur-
ther divided to instruction-offloading and function-offloading
granularity. Our approach focuses on function-offloading as
it the less demanding from the programmer’s standpoint and
requires no hardware adjustments, facilitating the widespread
adoption of the paradigm.

To defend our proposition, in Section II we present a
comprehensive analysis of the most prolific trends in the
NDP research field, emphasizing on the DAMOV simulator
environment [6]. Later on, in Section III, we proceed to
simplify the existing profiling methods and keep the pro-
cess solely in the simulator’s environment, by proposing a
two-step categorization method that is based on the metrics
of arithmetic intensity (AI) and Misses-Per-Kilo-Instructions
(MPKI) and is able to efficiently predict the NDP suitability
of an algorithm. In Section IV we present the results of our
simulations, and we finally give our conclusions in Section V.

II. NDP TRENDS

A. Overview
Since NDP was first introduced about five decades ago there

have been many different methodologies proposed, each of
them aiming to address a separate bottleneck of the processor-
centric design. The majority of them attempt to eliminate
unnecessary data movement between memory and processing
components, in order to override the time consuming off-chip
link. Based on whether they operate by impeding logic to
existing DRAM modules or they implement a 3D memory-
logic module, they are divided into Process-Using-Memory
(PUM) and Process-In-Memory (PIM). The latter are further
divided into instruction offloading and function offloading
based on granularity, i.e. the level of insight of the candidate
section of code.

The following analysis is a coherent assessment of some
of the most significant propositions, nevertheless concentrates
on the offloading candidate’s selection methodologies which



they suggest, examining the issue more from the programmers’
standpoint, since it is one of the most constraining concerns
in the direction of PIM adoption.

B. Process-Using-Memory
Although 3D-stacked memory architectures revolutionized

the PIM research field, there have been proposed approaches
that attempt to take advantage of existing DRAM architecture
to induce simple computation capabilities by implementing
minimal changes to the memory chips. Amongst data inten-
sive applications there is a fraction that comprises almost
exclusively of bulk data movement operations, thus, blocks
of instructions that require no computation such as batch
initialization of a memory block or bulk data copy.

RowClone [7] implements a mechanism that issues a row-
open request to multiple rows of a DRAM subarray and
activates the source and the destination row back-to-back. A
Pipelined Serial Mode transfers a large number of bytes from
the source to the destination, reducing the number of requests
needed. Ambit [8] is an extension of RowClone that tries to
include bitwise operations in its range of application. Using
a Triple-Row-Activation, the cells of the first two rows can
participate as operand in bitwise majority functions and return
the result to the third row. Tested on bitwise operations both
RowClone and Ambit achieved a 11.6× speedup, but despite
their results their applicability is limited to the aforementioned
operations and their success relies on carefully carving the
requests to fit well with the memory row size, a problem that
lies within the programmer’s or the compiler’s considerations.

C. Process-In-Memory
1) Instruction-Level-Offloading: Many algorithms that are

known to stress the memory subsystem utilize simple Read-
Write-Modify (RWM) operations such as integer addition or
equality checks. The support of RWM operations from the
Hybrid Memory Cube (HMC) 3D-stacked memory model via
Atomic Instructions made this category of applications the pre-
vailing subject of instruction-offloading PIM research. Graph
processing algorithms are infamous to invoke a significant
amount of cache misses because of the random memory access
patterns they produce, and are hence classic examples where
this technique has been applied.

Two models of instruction-offloading PIM are the Graph-
PIM and CAIRO. GraphPIM [9] split the algorithm into three
parts. The first and the third parts refer to the vertex’s metadata
so spatial locality and data presence in cache are presumable.
The second one though is related to accessing other nodes and
produces randomness in the access patterns. Most of the time
it consists of simple RMW commands such as comparisons
and additions. GraphPIM implements an instruction-level of-
floading mechanism that uses the HMC-Atomic commands
to perform these RMW operations directly on the memory
and bypass the need for data transfers. This methodology
can entrain a 2.5× speedup over the baseline PIM model but
the need from the programmer to analyze the algorithm and
identify suitable instructions limits its applicability. CAIRO
[10] functions like an extension of GraphPIM that proposed a
compile-time mechanism to automatically identify PIM candi-
date instructions by performing five tests per instruction. These
tests guarantee that the relying instruction can be mapped to

an HMC Atomic command and none of the referenced data
are located in a CPU register, thus, it is not accessible from
the PIM.

We chose to analyze these two cases in order to showcase
that instruction-level offloading is based on sound mathe-
matical foundations but requires either the programmer to
analyze the algorithm or strict offloading conditions to be met,
affecting only a small group of instructions.

2) Function-Level-Offloading: In order to facilitate NDP
offloading from the programmer’s standpoint, many efforts
concentrate on the creation of tools that will be able to
automatically distinguish PIM candidate code blocks. A way
to achieve the identification of such blocks is to run a
profiling tool beforehand and configure the PIM execution
based on the experiments result. For example, Intel’s V-Tune
can effectively detect if the application under examination is
compute or memory bound. By inspecting those numbers and
combining them with proposed research metrics, one can carry
out more effective experiments. An alternative way is via the
creation of compiler-based techniques that aim to unify the
process of both identifying and executing PIM code blocks
completely dismissing the programmer from any extra effort.
Albeit, extending the compiler’s functionality to include these
capabilities requires several modifications to be made in the
existing hardware which naturally stands as an obstacle to
widespread PIM adoption.

Although all proposed techniques converge to the fact that
transaction bandwidth should be the main criterion of choice,
none of them has been successful to systematically recognize
the best fits for Near Data Processing among bandwidth-bound
applications. So far application categorization is based on
experimental analysis and practical observations of execution
results, so many research groups attempt to provide a large
domain of tested benchmarks and conclude based on their
output.

Transparent Offloading and Mapping (TOM) [11] devel-
ops compiler-based techniques to offload bandwidth-intensive
computations in GPUs by adding two extra mechanisms. The
first one is a compiler extension that can identify loops which
have the potential to be memory-bound based on the number of
load/store word instructions they produce. Additionally, based
on the observation that loops generate paternal memory ac-
cesses, often with spatial locality, a second mechanism copies
the memory pages accessed inside the 3D-stacked memory
to minimize the memory access time. The actual offloading
is performed by a series of added hardware components that
utilize the aforementioned run-time information.

To assist the widespread adoption of PIM techniques in
modern memory systems, a more general approach of work-
load identification emerged. Ideally, the methodology should
not require any programmer’s knowledge of the underlying of-
floaded algorithm. DAMOV consists a comprehensive analysis
in this direction. The DAMOV team developed the first open-
source function-offloading granularity simulator. Furthermore,
they used external profiling tools and well-established metrics,
such as the roofline model to extract information about an
application’s dependency on the memory system. The main
focus of their work is to methodically understand the reason
behind any memory related slowdowns an algorithm may
experience. For example, after traversing through a number of



processing cores ranging from 4 to 256, they investigate the
total cache misses. If this number of misses decreases as the
cores count increases, that means that the application makes
a good utilization of the caches. They continue accordingly
until they end up generating six function categories based on
the source of the data transfer bottleneck.

Despite being essential to identify the exact reason of slow-
down, an extensive methodology like this is not necessary if
the primary goal is to define if the application can exploit NDP
to improve its performance. To this extent, the methodology
should be as simple as it gets, using only the minimum number
of metrics and the classification steps actually needed.

III. METHODOLOGY AND METRICS

All the above-mentioned works use either external profiling
tools, isolated metrics, or concentrate on a specific category
of applications. Thus, a need has emerged to constructively
categorize applications, so that a programmer can decide
on whether the algorithm could benefit from PIM, just by
identifying in which class it belongs.

Prior works have come up with indicative metrics that can
be observed as a guide for efficient workload profiling. Such
metrics are:

1) The Arithmetic Intensity (AI). This metric indicates
whether the application under examination is considered
compute-bound or memory-bound. For an application to
be considered compute-bound, the total time consumed
performing computations must outweigh the time spent
for data transfers by a significant amount. AI is defined
as the quotient of instructions a CPU performs divided
by the total bytes accessed in the main memory.

2) The Last Level Cache Misses Per Kilo Instruction
(MPKI). This metric is used as an indicator of an ap-
plication’s dependence from the memory system. MPKI
can be derived as the quotient of the number of the
cache misses occurred during the execution divided by
the average instructions among all processing cores. A
high MPKI value can either mean that the application
produces accesses to memory addresses that are far from
one another, making it harder for the system to collect
all the data needed inside the cache hierarchy, or that
the application operates on a significant amount of data,
the size of which exceeds the caches capacity by a lot.

The goal of our methodology is first of all to accurately
extract the above-mentioned metrics for every algorithm under
examination, and then to provide a combination of these
metrics that is able to produce exact classes of functions with
similar behavior when offloaded to PIM.

The methodology we developed can be broken down to
three major steps. The first step is the profiling of each
application via the extraction of its key metrics. This is done
by feeding the source code of the function accompanied with
the corresponding workload to the DAMOV simulator and
filtering the resulting log files through our python facilitation
scripts. The second step is the independent analysis of the AI
and MPKI metrics in order to conclude on whether they can
serve as sufficient indicators. As this step suggests, we propose
a two-step workload classification method which relies on
dividing the application firstly by their MPKI metric and then
by their AI.

Although classification techniques have also been suggested
in the past, we find our two-step approach to provide a suffi-
cient trade-off between accuracy and simplicity. Its simplicity
can be a key factor for a future transcription of this work as
a methodology that can be executed by a compiler, further
alleviating any programmer’s involvement. In our evaluation
we make a considerate selection of illustrative algorithms
for every classification category in order to allow for the
generalization of the results

Fig. 1. Speedup over AI.

Fig. 2. Speedup over MPKI.

IV. EXPERIMENTAL RESULTS

All experiments presented below have been performed on a
suite of 28 representative applications, which are listed later
on in Figure 4.

A. Arithmetic Intensity Analysis
In order to conclude on whether the metric of Arithmetic

Intensity is a suitable one, we extract its value for the 28
applications (Figure 1). We observe that all functions subjected
to a slowdown are concentrated in the area between 45.10
and 390. There are two exceptions in opposite directions. The
Bezier Kernel calculation performs better on the host CPU, but
is not included in the aforementioned area. The Padding holds
the highest speedup calculated at ×2.54, also holds the highest
AI value (447). That being said, an AI value of 40 segregates
the functions into two groups. The first group that consists
of all applications with AI less than 40 provide an average
speedup of 1.41. The second group that holds applications with
AI greater than 40 provides an average slowdown of 0.81. In
conclusion, the AI value of 40 manages to classify the apps
with a 92% efficiency that could be improved by including AI
as part of our two-step categorization method.

B. MPKI analysis
After simulating the same 28 applications we extract the

MPKI values (Figure 2). Related studies have attempted to
verify an MPKI threshold value of 10. The output verifies that
all applications with MPKI greater than 10 could benefit from
PIM. The average speedup these applications deliver is ×1.76.
Nevertheless, the metric is incapable of showing the existence



of functions that can benefit from the NDP even though they
have a smaller MPKI result. We observe a random speedup
pattern for the applications that resulted in an MPKI value less
than 10. Using the knowledge of the underlying algorithm,
we notice that many of these applications perform only trivial
algebraic calculations (e.g., triple matrix multiplication). These
observations lead us to assume that MPKI can be coupled with
AI to provide a more precise characterization.

C. Applications Classification
Taking the above metric analysis into account, we observe

that a sequential deployment of both could produce an accurate
technique to determine the NDP suitability of a workload.
Exploiting the fact that MPKI is accurate for applications
that reside above the threshold value, we firstly divide the
applications into two groups. Group A consists of all the
functions with MPKI greater than 10 as mentioned before. We
then apply the AI metric filtering to group B which contains
the applications that the MPKI failed to accurately address. AI
succeeds to address the potential performance improvements
dividing the application into group B and group C. In group B
we classify the functions that produce MPKI < 10 but AI <
40. Their average speedup value is ×1.20, less than the average
value of group A, as expected. In group C we classify the
applications with MPKI < 10 and also AI > 40, with average
speed up of ×0.804. These compute-bound applicationss are
better suited for host execution (Figure 3). Finally, we present
our two-step classification method overview (Figure 4).

Fig. 3. Application Groups.

V. CONCLUSION

In this work we deducted a comprehensive review analysis
of the most prevalent categories in the domain of NDP
research. In order to support the unrestricted research about
the adoption of PIM we narrowed down our focus to software
simulation using the DAMOV simulator. For the facilitation
of the programmer, we concentrated our efforts to function-
offloading NDP approaches with no knowledge of the under-
lying algorithm. In this direction we presented a simplified,
yet accurate two-step classification method that is based on
two prevalent metrics, AI and MPKI, and successfully divides
applications based on their NDP execution speedup.

We believe that the future of NDP exploration should high-
light whether the generic approach of function-offloading will

Fig. 4. Application Classification.

be beneficial enough to prevail against the faster but confined
instruction-offloading. We also propose that the simplicity of
this analysis could be a good starting point for the development
of a real-time compiler-based offloading technique.

REFERENCES

[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “Pro-
cessing data where it makes sense: Enabling in-memory computation,”
Microprocessors and Microsystems, vol. 67, pp. 28–41, 2019.

[2] S. A. McKee, “Reflections on the memory wall,” in Proceedings of the
1st Conference on Computing Frontiers, 2004, p. 162.

[3] D. Elliott, W. Snelgrove, and M. Stumm, “Computational ram: A
memory-simd hybrid and its application to dsp,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 1992, pp. 30.6.1–30.6.4.

[4] Memory cube consortium. “hybrid memory cube specification 2.1”.
[5] S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna, and O. Mutlu,

“Processing-in-memory: A workload-driven perspective,” IBM Journal
of Research and Development, vol. 63, no. 6, pp. 3:1–3:19, 2019.

[6] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar,
I. Fernandez, M. Sadrosadati, and O. Mutlu, “Damov: A new method-
ology and benchmark suite for evaluating data movement bottlenecks,”
IEEE Access, vol. 9, pp. 134 457–134 502, 2021.

[7] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “Rowclone: Fast and energy-efficient in-dram bulk data copy
and initialization,” in Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2013, pp. 185–197.

[8] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in dram,”
IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 127–131, 2015.

[9] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works,” in 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 457–468.

[10] R. Hadidi, L. Nai, H. Kim, and H. Kim, “Cairo: A compiler-assisted
technique for enabling instruction-level offloading of processing-in-
memory,” ACM Trans. Archit. Code Optim., vol. 14, no. 4, 2017.

[11] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler, “Transparent offloading and mapping
(tom): Enabling programmer-transparent near-data processing in gpu
systems,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 204–216.


