
Single-Cycle MIPS Processor based on
Configurable Approximate Adder

Amir E. Oghostinos1, Kareem Moussa1, Amr Elnaggar1, Alaa AbdAlRhman2, and Ahmed Soltan1,2
1School of Engineering and Applied Sciences, Nile University, Giza 12677, Egypt
2Nanoelectronics Integrated Systems Center (NISC), Nile University, Giza, Egypt

Abstract—Enhancing computer architecture performance is
a significant concern for architecture designers and users. This
paper presents a novel approach to computer architecture
design by using an approximate adder with configurable
accuracy in a single-cycle MIPS processor as a study case.
Using approximate adders decreased the delay on the expense
of the design area. Using approximate computing with the
MIPS processor, the timing performance has been improved
by 253.4% compared to the lookahead adder. It has been
implemented and tested using System-Verilog.

Index Terms—Approximate computing, Computer architec-
ture, Single-cycle MIPS processor, Adder, Performance

I. INTRODUCTION

Approximate computing is an emerging design technique
that trades off the correctness of conventional computations
with modern computing systems’ performance and energy
efficiency. Approximate computing aims to improve design
parameters metrics such as execution speed and cost while
allowing computing errors to occur within an acceptable
frequency and magnitudes [1]. As a result, this would
increase the performance, decrease the energy consumed by
systems and increase the density of systems in one chip
[2]–[4]. Approximate computing can be done at different
levels, such as electronic circuit design (transistor level),
arithmetic operation approximation (adders, multipliers), and
system requirement [5]. Approximate computing can either
minimize the delay by logic reduction or voltage scaling.
Probabilistic CMOS can reduce energy consumption by most
higher voltages to high critical circuits and most significant
bits to ensure an acceptable accuracy while carefully reduc-
ing the supply voltages for the least significant bits that have
a more negligible impact on the final result’s accuracy. A
probabilistic adder is designed based on a conventional adder
with various supply voltages depending on the importance
of bits [6]. However, this technique has a very high imple-
mentation cost due to the complex control for the supply
voltages. Therefore, most approximate arithmetic circuits
are designed as simple schemes to control and implement
based on the logic reduction method. In general, approximate
computation components have more negligible latency and
low accuracy. Therefore, it can not be acceptable in any
accurate applications. For example, image processing and
video streaming applications accept tolerance in calculations
based on the purpose of the processing [5]. However, the
accuracy required in images used for diagnosis differs from

the accuracy of images used for vision aid systems used by
visually impaired people.

Hence, Approximate computing found its way into dif-
ferent applications such as image processing and video
compression. In these applications, the main focus was
on the processing speed, and performance optimization for
timing [7]. Furthermore, approximate computing introduces
a new concept of configurable accuracy computing [3]. In
configurable accuracy, the computation accuracy is related
to the timing constraints and the available power budget. By
using configurable accuracy computing, we can implement
battery-controlled wearable devices. Hence, the available
power budget controls the accuracy of calculations and
system performance.

Approximate computing has been used mainly to per-
form particular functions in digital systems. Especially in
the image processing applications and video streaming to
minimize the processing time and guarantee live streaming
with high frames per second rates. However, approximate
computing can potentially impact using general-purpose
architectures such as single-cycle, multi-cycle, and pipeline
architectures because its design is not applicable in high
accuracy applications, as mentioned. Indeed, Approximate
computing can be applied to both adders and multipliers
[8]. However, this work illustrates only the impact of using
adders as an example.

This work studies approximate adders in general processor
purposes with MIPS single-cycle architecture as an exemplar
of approximate adders in general-purpose processors. The
modified architectures of MIPS can be used in power-
sensitive applications as wearable biomedical devices [9].
This architecture enhances addition performance by lever-
aging approximate adders, which perform summation faster
than the common adders. However, because the most com-
mon implementations use full adders, they cause an unneces-
sarily long critical path. Using a configurable approximate
adder in this work led to shortening the critical path and
having the shortest delay possible while maintaining up to
100% adding accuracy.

This paper is organized as follows: a literature review of
adders is introduced in Section II. The methodology of using
the approximate adders is illustrated in Section III. Finally,
the results and discussion are presented in Sections IV, V.



II. APPROXIMATE ADDERS

In [2], a delay comparison of six adders: Ripple Carry,
Conditional Sum, Conditional detect Carry-Lookahead,
Carry-Skip, Carry-Select. Ripple Carry adder is imple-
mented using n (number of bits) one-bit full adders. Hence,
the ripple-carry adder has the longest path for the carry
propagation, which causes a worst-case delay of 51.84 ns.
However, it is the simplest and cheapest adder design. On the
other hand, the conditional-sum adder is based on having two
groups of output. The first one assumes the input carry is 0,
while the other group assumes that the input carry is 1. Then,
the output carry is predicted based on the input carry/pattern.
Hence, the worst delay for the conditional sum is 85% better
than the ripple carry adder for the same technology [2].

The completion detection conditional sum adder is a
modified version of the conditional-sum adder. It detects the
sum generation, which decreases the worst delay to 7.92 ns.
The Carry-Lookahead improves the Ripple-Carry adder by
using the inputs to calculate the carries at the beginning,
which reduces the propagation time to 24.96 ns. The Carry-
Skip skips the carry if the carry of the following stages is
not needed as it is equal to the first stage. As a result, it
has the worst delay of 26.37 ns. Carry-Select adder, each
stage produces two outputs. One of the outputs is for the
input carry ”1”, and the other is for the input carry ”0”.
According to the actual input carry, the correct output is
selected. As a result, the Carry-Select adder’s worst delay
of 24.75 ns. [2], [10], [11].

Indeed, Carry-Skip, Conditional-Sum, and Conditional-
Detect adders can be considered an early stage of approx-
imate adding. However, these adders always target 100%
accuracy. Hence, they did not make any use of the prediction
scheme. On the other hand, approximate designs aim to
generate almost correct results (i.e., the error is acceptable
within a range based on the application) to reduce the
calculation latency. However, in some applications, avoiding
severe quality degradation can be accomplished by aug-
menting an error recovery circuit. This circuit comprises
error detection and correction parts, which are conditionally
activated to overcome erroneous approximated outputs, pre-
serving the desired quality. Moreover, some Approximate
computing techniques introduce the idea of configurable
accuracy. In these techniques, the accuracy is correlated
to energy consumption [12], [13], which leads to a new
concept of energy-based configurable processors. In various
efforts suggested, approximate adders with variable latency
error recovery circuit utilize an additional clock cycle to
operate the error recovery process for any detected errors
[11], [3]. On the other hand, in contexts where the required
accuracy level needs to be changed during execution time,
the correction of erroneous results should be configurable to
maximize the benefit of approximate operations.

By adding accurate configurable computing to general-
purpose architectures, new instructions will be added to use
the proper accuracy based on the available power. However,
these new instructions can add complexity to the assembly

and, hence, the programming process.

III. PROPOSED DESIGN

In this work, approximate adders are used with single-
cycle architectures to illustrate the impact of approximate
computing on architecture performance. The single-cycle
architecture consists of three adders. The adder inside the
ALU is replaced with an accuracy configurable approximate
adder, as depicted in fig.1. The other two adders are related
to the program counter, and both have to give a very accurate
result. Hence, using traditional adders for these two adders
is better considering the needed accuracy. The assembly of
the processor is modified to two more addition instructions:
ADDC1 and ADDC2, where C stands for configurable and
the number following the instruction refers to the level of
accuracy. The single-cycle MIPS processor was Designed
using System-Verilog hardware description and verification
language, a superset of the Verilog language extended with
verification features.

The MIPS processor in fig. 1 is theoretically divided
into five stages: Fetch, Decode, Execute, Memory, and
Writeback. Each stage contains one costly main operation.
Signals from the control path control every main block
in these stages. These signals dictate operations such as
whether the register should be written read or any other
operation performed by the ALU.

A. Single-Cycle Processor Design

The MIPS processor in fig. 1 is theoretically divided
into five stages: Fetch, Decode, Execute, Memory, and
Writeback. Each stage contains one costly main operation.
For that, signals from the control path control every main
block in these stages. These signals dictate operations such
as whether the register should be written read or any other
operation performed by the ALU.

B. Adder Design

The approximate adder that is designed and explained in
[3] and illustrated in fig. 2 is used instead of a full adder
for the add operations to reduce the total delay of the add
operation, as the add operations have a critical path length
equal to the length of a single operand (32-bit in this case).
The approximate adder is divided into four smaller sub-
adders, where carry is predicted for each sub-adder instead
of being propagated from the previous sub-adder; thus, the
critical path is one-fourth the size of the operand. Then, a
correction stage in fig. 3 is employed to get variable accuracy
up to 100% for the output result. For cases where errors
are not tolerated, such as the load byte instruction where
the memory address must be exact, fully accurate addition
is used. In other cases where error can be tolerated, the
accuracy can be adjusted during processor operation to de-
crease the delay, leading to an overall increase in throughput.
Other adders in the processor used for incrementing program
counter and calculating PC branch are using typical ripple-
carry adders as their delay is not of concern as they are not
on the critical path of the processor.



Fig. 1: Proposed Single-Cycle MIPS Processor
emphasizing the ALU design

Fig. 2: The approximate adder used in the ALU

Fig. 3: Full (3-stage) Correction Unit

IV. RESULTS

To test the implementation, a simple program that carries
out several addition operations is loaded into the instruction
memory, and the final value is observed as output from the
ALU. Several accuracy variations were tested: Approximate
adder with 3-stages (full) correction in fig. 5, 1-stage of

Fig. 4: Addition with 1-stage Correction

Fig. 5: Addition with 3-stage (full) Correction

TABLE I

Adders Maximum Delay (ns)
Ripple Adder 51.84

Carry-Lookahead 24.96
Carry-Skip 26.37

Carry-Select 24.75

Approximate Adder with
3-stage correction

(Full accuracy)
9.85

Approximate Adder with
1-stage correction 9.23

Approximate Adder
without correction 6.28

correction in fig. 4, and without correction stage.
The delay of the addition operation is 9.85 ns, using the

approximate adder adjusted to full accuracy, which is shorter
than ripple-carry and typical adders with higher delays, as
shown in Table I.

V. CONCLUSION

This paper briefly discussed different approximate
adders architectures and compared their delays. Then, a
configurable-accuracy processor is introduced using a con-
figurable approximate adder in a single-cycle MIPS proces-
sor. Finally, two new assembly instructions are introduced to
configure the processor through software with two different
accuracy levels. The approximate adder has a maximum
delay of 6.28 ns when configured to minimum accuracy.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[2] M. A. Franklin and T. Pan, “Performance comparison of asynchronous
adders,” in Proceedings of 1994 IEEE Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE, 1994, pp.
117–125.

[3] K. Al-Maaitah, G. Tarawneh, A. Soltan, I. Qiqieh, and A. Yakovlev,
“Approximate adder segmentation technique and significance-driven
error correction,” in 2017 27th International Symposium on Power and
Timing Modeling, Optimization and Simulation (PATMOS). IEEE,
2017, pp. 1–6.

[4] A. AbdAlRahman, A. Soltan, and A. G. Radwan, “An optimized
implementation of gl fractional-order,” in 2021 IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS). IEEE,
2021, pp. 669–672.



[5] G. Rodrigues, F. Lima Kastensmidt, and A. Bosio, “Survey on
approximate computing and its intrinsic fault tolerance,” Electronics,
vol. 9, no. 4, p. 557, 2020.

[6] K. Palem and A. Lingamneni, “Ten years of building broken chips:
The physics and engineering of inexact computing,” ACM Transac-
tions on Embedded Computing Systems (TECS), vol. 12, no. 2s, pp.
1–23, 2013.

[7] Y. Zhang, X. Yang, L. Wu, J. Lu, K. Sha, A. Gajjar, and H. He,
“Exploring slice-energy saving on an video processing fpga platform
with approximate computing,” in Proceedings of the 2018 2nd Inter-
national Conference on Algorithms, Computing and Systems, 2018,
pp. 138–143.

[8] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Tosam: An
energy-efficient truncation-and rounding-based scalable approximate
multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 5, pp. 1161–1173, 2019.

[9] A. Soltan, J. M. Barrett, P. Maaskant, N. Armstrong, W. Al-Atabany,
L. Chaudet, M. Neil, E. Sernagor, and P. Degenaar, “A head mounted
device stimulator for optogenetic retinal prosthesis,” Journal of neural
engineering, vol. 15, no. 6, p. 065002, 2018.

[10] S. M. Nowick, K. Y. Yun, P. A. Beerel, and A. E. Dooply, “Speculative
completion for the design of high-performance asynchronous dynamic
adders,” in Proceedings Third International Symposium on Advanced
Research in Asynchronous Circuits and Systems. IEEE, 1997, pp.
210–223.

[11] V. Dhandapani, “An efficient architecture for carry select adder,”
World Journal of Engineering, 2017.

[12] D. Ma, R. Thapa, X. Wang, X. Jiao, and C. Hao, “Workload-aware
approximate computing configuration,” in 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
920–925.

[13] E. Farahmand, A. Mahani, M. A. Hanif, and M. Shafique, “High
performance and optimal configuration of accurate heterogeneous
block-based approximate adder,” arXiv preprint arXiv:2106.08800,
2021.


