
A Low-Latency Syndrome-based Deep Learning
Decoder Architecture and its FPGA Implementation

E. Kavvousanos and V. Paliouras
Electrical and Computer Engineering Department

University of Patras, Greece

Abstract—Recently, Machine Learning has been considered as
an alternative design paradigm for various communications sub-
systems. However, the works that have assessed the performance
of these methods beyond the algorithmic level are limited. In this
paper, we implement in hardware and evaluate the performance
of the Syndrome-based Deep Learning Decoder for a BCH(63,45)
code in terms of throughput rate and latency. The implemented
Neural Network is compressed by applying pruning, clustering
and quantization to an 8-bit fixed-point representation, with no
significant loss in its BER performance, while achieving 90%
weight sparsity in each layer. An FPGA architecture is designed
for the decoder which exploits the compressed structure of the
Neural Network in order to accelerate the underlying com-
putations with moderate hardware requirements. Experimental
results are provided which show that the decoder achieves latency
less than a tenth of a millisecond and a throughput rate up to
5 Mbps, substantially outperforming previous implementations
by 30×.

I. INTRODUCTION

Machine Learning (ML) has seen impressive research ac-
complishments in the last decade. Deep Learning (DL) and
Artificial Neural Networks (ANN) have gained extensive at-
tention and have seen great adoption in manifold data-driven
problems and applications. The extent of the research effort
is justified considering the unparalleled accuracy that various
ANN architectures exhibit in quite diverse problems.

Recent research works in communication systems follow a
data-driven approach by utilizing Machine Learning methods
to address several open problems in the Physical and Medium
Access Control layers. These new ML-oriented techniques are
applied in different components of communication systems
individually, e.g., channel coding and decoding, channel esti-
mation, or to jointly optimize the transmitter and the receiver.

Regarding Error Correction, decoders have been introduced
for binary linear block codes which approach maximum-
likelihood performance for small block lengths. Nachmani et
al. [1] build a Neural Network based on the Belief Propaga-
tion (BP) algorithm and the associated Tanner Graph which
improves the decoding performance for small dense codes.
Xu et al. [2] also build a BP-based ANN Decoder for Polar
Codes and propose a hardware implementation. Teng et al.
[3] exploit the iterative nature of the BP-NN for Polar Codes
and apply weight sharing and quantization between iterations.

This research has been co-financed by the European Union and Greek na-
tional funds through the Operational Program Competitiveness, Entrepreneur-
ship and Innovation, under the call RESEARCH-CREATE-INNOVATE
(project code: T1EDK-02551).

Bennatan et al. [4] exploit the syndrome and the reliability of
the received block to extract the error pattern by utilizing a
trained ANN. This Syndrome-based DL Decoder (SDLD) can
be considered as a universal decoding method as the ANN
can be trained for any code and channel model. SDLD is also
studied in [5], where a hardware implementation is showcased
using generic DL accelerators, so-called DPUs, in FPGA.

ANNs owe their impressive accuracy to intensive computa-
tions. Modern ANN architectures require millions of multiply-
accumulate (MAC) operations and excessive data movement
and storage imposing limitations to high performance, low
power and resource utilization rendering their implementa-
tion a challenge. Han et al. propose an ANN compression
methodology which includes weight pruning, clustering and
quantization. The compressed ANN significantly reduces the
required MACs and memory with minimal loss of accuracy.
Special hardware can be designed that take advantage of the
imposed compression, accelerating ANN inference [6],[7].

While DL-enhanced decoders are limited to short block
lengths, they still can be of interest in applications where low
latency and high reliability are needed. For example, the Ultra-
Reliable Low Latency Communications (URLLC) feature of
5G [8] poses such requirements.

In this paper, we design an SDLD architecture suitable for
implementation on an FPGA device. To accelerate the involved
ANN, a compression method is applied by pruning, clustering
and quantizing its weights. Furthermore, the inference of
the ANN is accelerated by introducing a Sparse Matrix-
Vector Multiplication processor which exploits both weight
matrix and input vector sparsities. Moreover, the weight matrix
of each layer is partitioned for better parallelism. All the
required parameters are stored in on-device FPGA memories
to avoid external DRAM accesses. The layers of the ANN
are operated in a pipelined fashion to maximize throughput
rate. To the best of our knowledge, this paper showcases a
novel DL decoder architecture and FPGA implementation that
leverages both weight and layer input sparsity to achieve 30×
higher throughput rate than prior art. The measurements and
verification prove the feasibility of the SDLD implementations
with moderate hardware requirements; hardware complexity
vs. throughput rate and latency trade-offs are investigated,
demonstrating the potential of this type of decoder.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of the SDLD. Section III describes

the methodology for the compression of the employed ANN.
Section IV presents the decoder architecture designed for
FPGA implementation. Section V evaluates the implementa-
tion and compares it to alternative decoding methods. Finally,
Section VI discusses our findings and concludes the paper.

II. OVERVIEW OF THE SYNDROME-BASED DL DECODER

A. Notation
Let a binary information message of k bits mmmb ∈ {0, 1}k,

be encoded to a codeword xxxb ∈ C, where C ⊂ {0, 1}N is the
codebook of the (N, k) binary linear block code. We assume
Binary Phase-Shift Keying (BPSK) modulation, therefore the
bits of the codeword xxxb are modulated to xxxs, via the mapping
xs,i = 1−2 ·xb,i. We note that the subscripts b and s are used
to denote binary (i.e., {0, 1}) and bipolar (i.e., {−1, 1}) objects
respectively. The modulated symbols are transmitted over the
channel and the receiver obtains a sequence yyy ∈ RN . The
sequence yyy is related to xxxs via the channel noise statistics. In
the case of AWGN channel, the received sequence is described
by yyy = xxxs +nnn, where nnn is the channel noise vector.
B. Syndrome-Based DL Decoder Operation

SDLD [4] relies on the estimation of the noise pattern that
distorts the received word. Decoding consists of three stages;
pre-processing, noise estimation and post-processing.

In the pre-processing stage, the decoder receives the channel
output yyy (reliabilities) and extracts the bipolar hard deci-
sion yyys = sign (yyy) and the absolute values |yyy|. The binary
hard decision of the channel output is also computed as
yyyb = 0.5 · (1− yyys). Consequently, yyyb is used along with the
(N − k)×N parity check matrix HHH of the code, in order to
generate the syndrome of the received sequence, sss =HHH · yyyb.

The noise-estimation stage is the core computational module
of the decoder and is implemented as an ANN that has been
trained to identify the erroneous bits in the received sequence.
Its operation is described by:

zzz = fL(fL−1(. . . fl(. . . f1(vvv)))), (1)

where vvv = [sss, |yyy|] is the input to the noise-estimation ANN
and comprises the syndrome along with the absolute values
of the channel reliabilities. Its output zzz is an N -dimensional
vector, which corresponds to the estimated noise pattern.
Here, fl(uuul;θθθl), l = 1, 2, . . . , L resembles to a non-linear
transformation, i.e., layer, of the ANN with its respective
parameters θθθl. The output layer fL(uuuL;θθθL) uses a tanh or a
sigmoid function to classify each bit. The depth of the network
L and the size of each layer can be selected arbitrarily, trading
error-correcting accuracy with computational complexity.

Each output element zzzi, i = 1, 2, . . . N corresponds to the
respective bit in the codeword. For the case of tanh activation
in the output layer, if zi > 0 then the respective bit in
the sequence is considered correct, else if zi < 0 then the
respective bit is in error. The magnitude of |zzzi| indicates the
likelihood of the i-th bit being correct or erroneous. Finally,
the estimated error pattern from the ANN is combined with the
hard decisions x̂xxs = yyys · sign (zzz) in the post-processing stage
in order to flip the faulty bits.

III. COMPRESSION OF THE NOISE ESTIMATION ANN
A fully-connected (FC) layer is a common transformation used
in modern ANNs. Essentially, it incorporates a matrix-vector
multiplication (MVM) of the weight matrix WWW and the input
vector uuu, the addition of a bias vector bbb (which can be fused
in WWW) and the application of a non-linear function g, i.e.

ϕϕϕ = g (WWW · uuu+ bbb) . (2)
The MVM dominates the computational load in an FC layer.
In many ANNs the weight matrix WWW may have hundreds of
thousands or even millions of parameters which translate to
an equal amount of multiply-accumulate operations.

In this work we implement in FPGA an SDLD trained for
the case of the BCH(63,45) code. For the Noise Estimation
ANN an organization of seven fully-connected layers is chosen
as in [5]. More complex organizations can potentially lead
to better error correcting capability trading off computational
complexity. The ANN accepts an input vector of length
N + (N −K) = 81. For the hidden layers, the output size
is set to 300 and the Rectified Linear Unit (RELU) activation
is used. The activation of the output layer is tanh. The total
number of parameters used by this architecture is 495, 063.

The ANN is trained with the ADAM Stochastic Gradient
Descent variant [9] using mini-batches of 8, 196 samples per
training step. The samples are generated assuming an AWGN
channel with a noise level of Eb/N0 = 4 dB. The ANN is then
validated for various noise levels to assess its generalization
and error correcting capability.

Having a trained baseline model, compression methods are
applied for the Noise Estimation ANN to deploy the SDLD
in FPGA efficiently with minimal loss in accuracy. Initially,
we apply gradual magnitude-based pruning [10] and eliminate
low-magnitude weights of the FC layers while fine-tuning
for a few epochs in order for the network to recover in
between pruning steps. Furthermore, the weight matrices are
partitioned into several submatrices according to the number
of Processing Elements that are to be used for the acceleration
of the underlying computations as described in Section IV-A.
All submatrices are pruned to the same sparsity level in
order to balance the MACs across the computation resources
[7],[11]. This way, an overall 90% sparsity is achieved for
every layer. Then, clustering is applied independently to the
remaining weights of each layer using the K-means algorithm.
For each layer 64 clusters are used and the cluster centroids
are quantized to 8 bits fixed-point. Thus, Eq. (2) becomes

ϕi = g

(
bi +

∑
{j|wi,j ̸=0}

CIi,j · uj

)
(3)

for the i-th element of the activation vector. Here C and Ii,j
denote the cluster centroids look-up table and the cluster index
of the non-zero weight wi,j respectively.
IV. PROPOSED FPGA ARCHITECTURE FOR THE DECODER

Following the algorithmic simplifications of Section III, we
design an SDLD hardware architecture for the BCH(63,45)
code, exploiting any parallelism possible to achieve low la-
tency and high throughput rate. We use Xilinx’s Vitis HLS

Stream
to

Block

Pre-
Proccesing

Stage

Post-
Proccesing

Stage

Output Stream
(Decoded bits)

Layer 2 Layer 4Layer 1 Layer 3 Layer 5 Layer 6 Layer 7

Noise Estimation Stage

Input Stream
(Channel reliabilities)

FIFO

FIFO

FIFO

Fig. 1. Block Diagram of the Decoder FPGA Architecture.

for rapid development and architecture space exploration and
model the system in High Level Synthesis C++.

Fig. 1 shows the overall architecture of the decoder. The
decoder receives a continuous stream of channel reliabilities
from a FIFO and packs vectors with length of N = 63.
The reliability vector is pre-processed and input vector for
the Noise Estimation ANN is derived. The binary hard deci-
sions yyyb are forwarded to an N -bit wide FIFO for the post-
processing stage. The elements of the ANN input vector are
quantized to 8-bit fixed-point representation with 3 integral
and 5 fractional bits (FXP-3.5). The output of the ANN is
in FXP-1.7 representation. The post-processing stage receives
the output of the ANN along with the binary word from the
FIFO and flips the erroneous bits. The corrected block is
forwarded to an outbound FIFO. All modules in Fig. 1 operate
concurrently in a dataflow pipeline. The data transfers between
the modules are performed via Ping-Pong buffers or FIFOs.
A. Acceleration of the Sparsely-Connected Layer

In order to maximize the throughput rate and minimize the
latency of the decoder the FC layers of the Noise Estimation
stage are accelerated by exploiting the compression described
in Section III. The weight matrix in every layer is sparse, with
10% non-zero values. We exploit this sparsity by designing a
Sparse Matrix-Vector Multiplication (SPMVM) accelerator.

The general organization of the Sparsely-Connected (SC)
Layer architecture is illustrated in Fig. 2. The layer consists
of an arbitrary number of Processing Elements (PE) which
execute the multiply-accumulate (MAC) operations involved
in the SPMVM. In order to exploit parallelism, the operations
of each PE correspond to a set of rows in the weight matrix
following a cyclic manner. For example, assuming P PEs,
the p-th PE, where p = 0, 1, . . . , P − 1, calculates MACs
associated with weights wi,j for which i mod P = p.
Furthermore, the weight matrix is partitioned with the same
principle and each PE is given a private weight memory locally
by using FPGA Block RAMs and LUTs. The local, on-device,
storage of the weights is feasible due to the relatively small
size of the ANN and the pruning applied. Each of the P sparse
matrices are stored in Compressed Sparse Column (CSC)
format. Since clustering is applied to the weights, we save
for each non-zero weight the index to its container cluster. As
we use 64 clusters, 6 bits are required by each index. Each PE
decodes the respective weight using the index and a private
look-up table with the cluster centroids, quantized to FXP-1.7.

Accumulator
Buffers

PE3

PE0

Input
FIFOs

Processing
Elements

Input Fetch
&

Control Unit

Activation &
Quantization

PE2

PE1

Input
Ping-Pong

Buffers

Output
Ping-Pong

Buffers

Parameter
Banks

Fig. 2. Block Diagram of the implemented Sparsely-Connected Layer, for
the case of 4 PEs.

The CSC format is preferable to alternatives because when
the MVM is calculated column-wise, we can take advantage
of input sparsity as well, in addition to the weight sparsity.
Since RELU is used as the activation of the hidden layers,
a considerable number of zeros is expected to the input of
subsequent layers. Thus, exploiting the particular zeros, MACs
are skipped in columns which have zero input value. Our
measurements reveal that layer activations contain about 50%
zeros, a percentage that slightly varies between layers.

The Input fetch and Control Unit forwards 8-bit input values
to the Input FIFOs of the PEs and manages their operation.
The PEs update the Accumulator Buffer which stores the
partial product sums. The precision of the MACs is kept
in FXP-10.22. Finally, the activation is applied to the final
product sums and the output is quantized with 8 bits. The
fixed-point representation of the output is determined by the
dynamic range requirements, calculated for every layer off-line
by feeding the ANN with an evaluation dataset. The activation
of the output layer is approximated by a hard tanh function.

V. EXPERIMENTAL RESULTS

A. Hardware Implementation Results
To implement the hardware prototype of the decoder, we use

the ZCU104 evaluation board from Xilinx, which accommo-
dates a ZU7EV MPSoC device. The verification setup includes
a Direct Memory Access (DMA) system which streams data
in and out of the decoder. Software running on the ARM
CPU of the device generates testing data, saves it in the board
DRAM and then instructs the DMA to continuously stream the
data to the decoder. Also, the DMA is instructed to transfer
the decoded data stream to the DRAM in order for the CPU
software to measure the decoding performance.

The error-correcting capability of the implemented decoder

0 1 2 3 4 5 6 7
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E

R

Berlekamp-Massey (SW)
OSD order-2 (SW)
SDLD, uncompressed, FP32 (GPU)
SDLD, compressed, FPGA

Fig. 3. BER performance of the implemented decoder and comparison with
software (SW) alternatives, for BCH(63,45).

TABLE I
DECODER PERFORMANCE

PEs/Layer Latency (µs) Throughput rate (Mbps)

4 154 2.7
8 111 3.7
16 83 5.0

is visualized in Fig. 3 as a Bit Error Rate (BER) vs. normalized
Signal-to-Noise Ratio (Eb/N0) plot. The BER performance
of the proposed implementation is very close to that of the
initial non-compressed FP32 model with an expected degra-
dation due to the applied compression. The BER performance
of Berlekamp-Massey and the Ordered Statistics Decoder
(OSD) [12] for BCH(63,45) are also shown for comparison.
The performance of the OSD order-2 approaches maximum-
likelihood decoding. By employing a more complex ANN it is
possible to approach maximum-likelihood decoding by trading
off decoding latency and hardware resources.

In order to investigate hardware complexity vs. process-
ing performance trade-offs in the proposed architecture, we
measure the latency and throughput rate as a function of
the number of PEs per SC layer, for various implemented
instances of the prototype. In all cases, we use a system clock
of 200 MHz. Table I reports the achieved measured latency
and throughput rate for each case. It can be observed that by
using more PEs per layer, the decoder achieves an anticipated
speed-up, at the cost of more resources, as seen in Table II.
B. Comparison

We compare the measurements of the implemented SDLD
with other DL-based decoding methods. Despite that several
DL-enabled decoders have been reported in the literature,
hardware implementations are scarce. Furthermore, different
codes, decoding algorithms, and technologies are employed.
Considering the BP-based Polar NND [2], its latency for a
Polar code of length N = 64 is given by 101 · tp, where tp is
the processing time of each stage. This decoder targets specific
codes as the underlying network exploits the corresponding
BP graph. If tp is comparable to the latency of an SC layer
in our architecture, then our implementation may experience
less latency overall due to fewer layers needed. It would be
interesting to see a hardware implementation of the Polar NND

TABLE II
FPGA RESOURCES COUNT AND DEVICE UTILIZATION

PEs/layer Resources

CLB LUT Registers BRAM

4 5147 29837 7815 18.5
17.87% 12.95% 1.70% 5.93%

8 7546 44593 14546 36.5
26.20% 19.35% 3.16% 11.70%

16 11500 70089 25050 58.5
39.93% 30.42% 5.44% 18.75%

in the future and compare experimental measurements.
The SDLD implementation in [5] is substantially outper-

formed since its throughput rate is limited to 165 kbps. Also,
its latency is considerably higher since an embedded CPU is
involved for the control of the employed DPU accelerators.

VI. CONCLUSION

In this paper, we showcased the FPGA implementation of
a Syndrome-Based Deep Learning Decoder. The underlying
Noise Estimation ANN is compressed and an accelerator has
been designed to fully exploit the 90% sparsity introduced
to the ANN. We report a throughput rate of 5 Mbps and
a latency of 83 µs for the case of 16 processing elements
per ANN layer, substantially improving related prior art in
terms of throughput. It follows that practical forward error
correction hardware SDLDs are possible when both layer input
and parameter sparsity are exploited.

REFERENCES
[1] E. Nachmani, E. Marciano et al., “Deep Learning Methods for Improved

Decoding of Linear Codes,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, 2018.

[2] W. Xu, Z. Wu et al., “Improved polar decoder based on deep learning,”
2017 IEEE International Workshop on Signal Processing Systems (SiPS),
pp. 1–6, 2017.

[3] C.-F. Teng, C.-H. D. Wu et al., “Low-complexity Recurrent Neural
Network-based Polar Decoder with Weight Quantization Mechanism,”
ICASSP 2019.

[4] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep Learning for De-
coding of Linear Codes - A Syndrome-Based Approach,” 2018 IEEE
International Symposium on Information Theory (ISIT), 2018.

[5] E. Kavvousanos and V. Paliouras, “Hardware Implementation Aspects
of a Syndrome-based Neural Network Decoder for BCH Codes,” 2019
IEEE Nordic Circuits and Systems Conference (NORCAS), pp. 1–6,
2019.

[6] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding,” CoRR, vol. abs/1510.00149, 2015.

[7] S. Han, X. Liu et al., “EIE: Efficient Inference Engine on Compressed
Deep Neural Network,” in Proceedings of the 43rd International Sympo-
sium on Computer Architecture, ser. ISCA ’16. Piscataway, NJ, USA:
IEEE Press, 2016, pp. 243–254.

[8] M. Shirvanimoghaddam, M. S. Mohammadi et al., “Short block-length
codes for ultra-reliable low latency communications,” IEEE Communi-
cations Magazine, vol. 57, no. 2, pp. 130–137, 2019.

[9] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, Y. Bengio and Y. LeCun, Eds., 2015.

[10] M. Zhu and S. Gupta, “To Prune, or Not to Prune: Exploring the Efficacy
of Pruning for Model Compression,” ArXiv, vol. abs/1710.01878, 2018.

[11] S. Cao, C. Zhang et al., “Efficient and Effective Sparse LSTM on FPGA
with Bank-Balanced Sparsity,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’19. Association for Computing Machinery, 2019, p. 63–72.

[12] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Transactions on Information
Theory, vol. 41, no. 5, pp. 1379–1396, Sep 1995.

