
Designing Application Analysis Tools for

Cross-Device Energy Consumption Estimation

Charalampos Marantos∗, Nikolaos Maidonis‡, Dimitrios Soudris§

School of Electrical and Computer Engineering, National Technical University of Athens, Greece
∗hmarantos@microlab.ntua.gr,‡nikos.maidonis.96@gmail.com,§dsoudris@microlab.ntua.gr

Abstract—Designing green and sustainable IoT applications
makes energy consumption a key optimization goal of software
development. Modern low-energy devices should be driven by
energy-aware software. A promising solution to assist developers
in this direction is provided by energy estimation tools. In this ar-
ticle, a method of designing flexible energy estimators is proposed.
The introduced solution calculates the expected consumption of
programs running on different devices and architectures by using
synthetic datasets, the popular Valgrind and Pin profiling tools
and the well-established Lasso regressor. In contrast to relevant
studies, the emphasis is not on the construction of the most accu-
rate tool, but on the characterization of the correlation between
the various metrics (features) and energy consumption, on the
comparison between predicting methods and on the construction
of practical and easy-to-develop tools. The proposed approach is
evaluated using the Polybench benchmark suite in widely used
ARM-based systems, achieving an R2 score of 0.96, which is
comparable to state-of-the-art approaches.

Index Terms—Energy Consumption, Estimation, Correlation,
Dynamic Instrumentation

I. INTRODUCTION

Modern Internet of Things (IoT) smart systems and applica-

tions include a large number of connected deep edge devices

installed in various environments (eg. industrial, sanitary, res-

idential buildings etc). The ever-increasing attention to these

applications pose new challenges to software developers as they

target devices where energy is a critical design constraint, with

great social and economic impact. As a result, bringing energy

efficient edge applications development closer to the software

engineering perspective by designing tools for analyzing source

code applications, estimating and monitoring potential energy

consumption during the Software Development Life Cycle is

now an active research topic [1].

In this direction, this manuscript introduces a methodol-

ogy for designing cross-device energy consumption estimation

tools. It is considered very important to state the specific prob-

lem that the presented methodology aims to solve: The energy

estimation tool runs on the programmer’s workstation (PC), as

part of the SDK tool used by the software developer. When the

final application or part of it is ready, the developer uses the

energy estimation tool to get an idea of the energy consumption

that the application’s code will consume if executed on a

list of embedded devices (cross-device). Although measuring

energy directly on the targeted edge device would give the most

accurate results, not all hardware alternatives are accessible

This work was funded by the EU’s Horizon 2020 Research and Innovation
Programme through SDK4ED project under Grant Agreement No. 780572.

New app

Generate synthetic

code
Measure energy

Profile apps

Extract info

Select Features

Compare models

Create dataset

Retrain model

Add pragmas

Profile

Estimate energy

Design Estimator Add new Platform Use Estimator

</> #

Fig. 1. Overview of the proposed framework

to developers and such a process may involve sophisticated

equipment (eg special sensors) or expertise. These extra efforts

would not only increase development time and cost, but may

also not be feasible in very complex applications that involve

a large number of different devices.

A large variety of approaches for solving this problem

has been introduced in the literature. Some approaches are

based on measurement based techniques that match assem-

bly instructions directly with energy consumption for specific

microarchitectures [2], while other techniques extend Worst

Case execution Time (WCT) tools [3]. Machine learning te-

chiniques use information retrieved from dynamic profiling

[4] or static code analysis [5]. The present work is focused

on the characterization of the correlation between the various

metrics and energy consumption of devices, on the comparison

between different estimation models and proposes a general

methodology for building extensible and easy-to-develop tools.

II. PROPOSED METHODOLOGY

The introduced methodology is shown schematically in Fig-

ure 1 divided into 3 parts: The first one (blue) describes the

central idea of designing energy estimators, while the second

(red) shows the proposed process for adding new target devices

to the introduced tool. The green box is the ready to use tool

that analyzes and estimates the energy consumption of new

applications. More details are provided in the next paragraphs.

1) Design Estimator: The first component is responsible for

generating synthetic code: the data-set used in the introduced

tool. More specifically, a set of Python scripts creates C-

language for-loops that include operations between random-

sized matrices. The maximum number of integer and floating

point arrays, as well as the maximum dimension size can be

configured by the user. In this work, we used up to 4 integer

tables and 4 floating point tables that have a maximum of 6

dimensions. To indicate the loop of interest, the ”#pragma scop”

and ”#pragma endscop” directives are placed. A representative

example of a generated loop is given in Listing 1.

Listing 1. Generated Loop example
#pragma scop
f o r (i =0 ; i <18; i ++){

f o r (j =0 ; j <250; j ++){
f o r (k =0; k<167; k++){

A0 [i] [j] [k] = A1 [i] [j] [k]*A1 [i] [j] [k] / A1 [i] [j] [k] ;
B0 [i] [j] [k] = B1 [i] [j] −B1 [i] [j] / B1 [i] [j]* B1 [i] [j] ;

}
}

}
#pragma endscop

The next stage (Profile apps) uses the popular Valgrind

and Pin dynamic instrumentation tools to profile applications

on the host machine (developer’s PC) and generate the in-

formation to be used by the estimation models. Valgrind’s

Cachegrind tool simulates the cache architecture and gathers

information about the Instruction/Data cache reads, writes,

misses and monitors Branching behavior. Valgrind’s Massif

tool measures Heap and Stack Memory usage. Pin offers

flexibility in designing specific monitoring metrics through

custom C++ programs. Custom designed measurements were

used to capture branching divergence information, as well as

the number of single-point and double-point operations and

the types of arithmetic operations. Pin metrics designed by

MICA (https://github.com/boegel/MICA) were also used, in-

cluding Instruction-Level Parallelism, Instruction Types (mem-

ory reads, memory writes, control flow, arithmetic operations,

etc.), Instruction and Data memory footprint, Memory reuse

distances, conditional Branching predictability, and Memory

stride (distances between subsequent memory accesses).

The information produced by the previous step is then ana-

lyzed in order to extract information for feeding the energy es-

timation models. This step is very important as it identifies the

energy related metrics. For this purpose, correlation and cross-

validation techniques are used to produce the final features.

These features are forwarded to the next component, which

is responsible for comparing and selecting the models that

estimate energy more accurately. These are key components of

the proposed methodology. A detailed analysis of these aspects

is presented in Section III.

2) Add new Platform: One of the main goals of the de-

signed estimators is to be extensible: New devices (hardware

platforms) can be added by the user easily following three steps:

• Run the synthetic codes on the new device in combination

with a call to the energy metering script. The user adds

commands to get energy information from external moni-

tors, specific paths in the device tree or, if no sensors are

available, user-defined metrics (eg. power-delay product).

• The energy measurements received from the previous step

are processed and form an extra dataset file (csv).

• The estimation model is retrained using the new data as en-

ergy values (y values), maintaining the same feature values

(x values) retrieved from the already profiled applications.

0.53

1.36
2.39

38.74 40.23

0.1

1

10

100

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

(a) Alternative models comparison

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

E
st

im
at

ed

Actual

(b) Lasso accuracy on test-set

Fig. 2. Choosing the best model to fit the synthetic data-set

A presentation of the extension to support an additional

platform based on these steps is provided in Section IV.

3) Use Estimator: The final product of the proposed method

for designing estimation tools (green box in Figure 1) analyses

new applications and estimates energy. First, the user has to

place the annotations to indicate the code block under interest,

as shown in Listing 1 (pragmas). The next step runs the

profiling tools and gathers the selected energy related features.

Finally, the produced results are forwarded to the model that

is responsible for estimating the potential energy consumption

for running the application on the device imported by following

the aforementioned process of adding a new platform.

III. ENERGY CONSUMPTION CORRELATION ANALYSIS AND

MODEL COMPARISON

The profilling stage produces more than 100 metrics related

to CPU, memory behavior, operations types, branches etc.

For choosing the best model, the generated dataset is splitted

into training and test sets and cross-validation techniques are

employed. Figure 2a presents the results of the best five models.

We might observe that the Lasso regressor is superior to the

competing models. This is due to its inherent feature selection

capability, which gives a competitive advantage because we

have a large number of features, where many express similar

or proportional quantities. More specifically, the Mean Squared

Error is 75 times smaller compared to using of the k-nearest

neighbors regressor and 2.5 times compared to the results of

using the Bayesian Ridge regressor. Figure 2b shows the results

of estimating the energy using the Lasso model on a selected

testset (1/5 of the generated dataset). According to these results,

the R
2 score between actual and estimated values exceeds 0.98.

A key concept of the present work is to study the correlation

between alternative metrics collected in the host machine

(developer’s workstation) and energy consumption of the ap-

plications measured on the targeted embedded devices. For

this purpose, we first employed the Spearman’s widely-used

correlation method, which evaluates the monotonic relationship

between two continuous variables: A coefficient is assigned to

each feature, which varies from -1 to +1. -1 or +1 indicates an

exact monotonic relationship. Positive correlations mean that as

the feature value increases so does the energy, while negative

correlations mean that the increase of the feature indicates

decrease in energy. Zero implies no correlation. The most im-

TABLE I
FEATURES WITH LARGEST SPEARMAN CORRELATION

Feature Spearman Correlation

Data L1 miss rate 0.97511
Instruction Reads 0.97905
Data reads 0.97897
Data writes 0.97712
Data Level 1 cache write misses 0.97581
Data Last Level cache write misses 0.97734
Instructions 0.97900

TABLE II
MOST IMPORTANT FEATURES ACCORDING LASSO MODEL

Feature Lasso importance

Instruction level parallelism 2.48196
Data writes 0.68814
Memory blocks and pages 0.43879
Heap memory size 0.37906
Arithmetic operations 0.32430
Memory stride 0.24014
Conditional branches 0.18763
Branch prediction misses 0.18500
Data Last Level cache miss rate 0.11928
Stack usage 0.09939
Data Level 1 cache miss rate 0.05392
Memory reads 0.01440

portant characteristics according to this analysis are presented

in Table I alongside with the values of their coefficients.

Table II gives an alternative correlation analysis based on

the weights calculated by Lasso. Lasso Regressor shrinks the

weights of non-used features to zero, while it assignes a non-

zero value to the rest of the features. Larger weights are given

to the most important features, presented on Table II.

Based on this analysis, the following conclusions are drawn:

• Instruction Level Parallelism indicates how many instruc-

tions can be processed in parallel affecting the perfor-

mance and respectively the energy consumption.

• Each memory access (especially writes) imposes a cost

in terms of energy consumption. The amount of cost is

affected by various parameters, such as the layer of the

memory hierarchy in which the access occurs. When a

cache miss occurs the CPU fetches requested data from the

main memory, imposing an energy consumption overhead.

The cache miss rate describes how effectively the appli-

cation uses cache memories. The memory reuse distances

(stride) heavily affect the potential cache performance.

• Modern CPUs use branch prediction mechanisms to guess

the branch that will be selected and fetch the corre-

sponding instructions in the CPU pipeline. When branch

prediction fails, the CPU pipeline is flushed, which has a

negative impact in application’s energy consumption.

• Arithmetic operations are managed by the ALU and often

consume a lot of energy (especially division). Thus, the

number of operations can be used as an energy indicator.

While one could argue that the conclusions seem obvious, the

profiling tools give us a list of more than 100 features related

to memory, CPU behavior, and possibly energy consumption.

The complete list of the examined features is not presented in

this manuscript due to lack of space. According to the correla-

0.001

0.01

0.1

1

10

'g
em

m
'

'ja
co

b
i-

2
d

'

'h
ea

t-
3

d
'

'tr
is

o
lv

'

's
y
m

m
'

'tr
m

m
'

'a
ta

x
'

'd
u

rb
in

'

'c
o
v

ar
ia

n
ce

'

'g
em

v
er

'

'g
es

u
m

m
v
'

's
y
r2

k
'

's
y
rk

'

'2
m

m
'

'3
m

m
'

'b
ic

g
'

'd
o

it
g

en
'

'm
v
t'

'c
h
o

le
sk

y
'

'g
ra

m
sc

h
m

id
t'

'c
o
rr

e
la

ti
o

n
'

'lu
'

'lu
d
cm

p
'

'f
lo

y
d

-w
ar

sh
al

l'

'a
d
i'

'f
d

td
-2

d
'

'ja
co

b
i-

1
d

'

's
ei

d
el

'

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

J)

Actual Estimated

Fig. 3. Estimating Polybench apps energy on Jetson TX1 (ARM Cortex A57)

0.001

0.01

0.1

1

10

'g
em

m
'

'j
a
co

b
i-

2
d

'

'h
ea

t-
3

d
'

'tr
is

o
lv

'

's
y
m

m
'

't
rm

m
'

'a
ta

x
'

'd
u

rb
in

'

'c
o
v

ar
ia

n
ce

'

'g
em

v
er

'

'g
es

u
m

m
v
'

's
y
r2

k
'

's
y
rk

'

'2
m

m
'

'3
m

m
'

'b
ic

g
'

'd
o

it
g

en
'

'm
v
t'

'c
h
o

le
sk

y
'

'g
ra

m
sc

h
m

id
t'

'c
o
rr

el
at

io
n
'

'lu
'

'lu
d
cm

p
'

'f
lo

y
d

-w
ar

sh
al

l'

'a
d
i'

'f
d

td
-2

d
'

'j
a
co

b
i-

1
d

'

's
ei

d
el

'

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

J)

Actual Estimated

Fig. 4. Estimating Polybench apps energy on Jetson Xavier NX (ARM v8.2)

tion results, instruction miss rate, some types of operations,

branch divergence rates, etc are not included. For example,

shift operations seem to have similar overhead to additions.

Similarly, multiplications, although they have a higher overhead

as they involve multiple additions, are only included coupled

with the rest of arithmetic operations in a single feature metric.

The choice of fewer metrics serves our purpose of creating

a methodology for designing simple estimators, as it reduces

the time overhead costs of the profiling phase (making the

integration in SDK tools easier) and produces a hierarchical

analysis of the alternative features.

IV. ESTIMATION RESULTS

This Section evaluates the proposed methodology using the

widely-used Polybench benchmark suite [6]. Using the models

built on the synthetic data-set we first estimate the energy of the

Polybench applications on Nvidia Jetson TX1 (using only the

CPU part of the SoC which is an ARM Cortex A57) and then

we evaluate the extensibility of the proposed method to support

other devices without any change to the model parameters.

A. Experimental Results

Figure 3 presents the estimated and the actual energy of

the 28 Polybench applications for the default input data sizes.

Actual energy ranges from less than 0.01 to 10 Joules. Based on

these results we might claim that the estimate can be considered

very promising. More specifically, the Mean Absolute Error

(MAE) is 0.17 Joules, while the estimations follow the real

values very well, as their correlation according to the Spearman

model is greater than 0.98 and the final R2 score exceeds 0.96.

Following the procedure presented in Section II-2, we added

an alternative device: The synthetic codes were executed on the

NVIDIA Jetson Xavier NX board, which incorporates a SoC

that contains a GPU (not used in the context of this manuscript)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

E
st

im
at

ed

Actual

(a) Jetson TX1 (ARM Cortex A57)

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2

E
st

im
at

ed
Actual

(b) Jetson Xavier NX (ARM v8.2)

Fig. 5. Actual vs Estimated energy on two different devices

and a 6-core CPU ARM v8.2 with a 2-level cache and 8 GB

128-bit RAM. The model was retrained and the results for

estimating the Polybench applications are presented in Figure

4. Based on these results, we can observe a high Spearman

correlation between the predicted and the actual values (0.98).

The MSE equals to 0.03 Joules. However, the R
2 score is

reduced to 0.77 due to the fact that the model mispredicts

some applications that consume less than 0.01 Joules of energy.

However, we might conclude that the performance of adding a

new platform can be considered acceptable as we did not make

any calibration to the Lasso model’s parameters.

The results of estimating the Polybench applications energy

vs the actual values are also presented in Figure 5. As shown

in this Figure, most of the points are very close to the

ideal diagonal line, confirming the high level of prediction

accuracy. We should mention that in the case of Xavier NX,

for the applications that consume less energy than 0.2 Joules

the predictions were mostly overestimating the actual energy.

Additionally, there are three applications for which we have

a relatively large error (more than 0.3 Joule). However, we

might conclude that these misspredictions do not affect the

overall quality of the presented methodology. The study of their

characteristics will give a future direction for improvements,

while a refinement of the model’s parameters is expected to

lead to better results. In the context of this work we focused

on showing the results of using exactly the same model.

B. Comparison to related approaches

The relevant methods vary greatly in the mechanisms they

use. Work in [2] employs a measurement-based method and

achieves high accuracy (R2
> 0.99). However, it targets only

a specific microcontroller and uses a small data-set of 60

programs. The authors in [3] are inspired by the Worst Case

execution Time (WCT) tools and design a energy estimating

method based on iterative approaches. These tools are usually

very slow and only support specific architectures. In addition,

their accuracy is usually limited, but the experiments included

in [3] achieve high a level of R
2
= 0.95. Our approach is

inspired by projects like [4] that use dynamic instrumentation

techniques. The work in [4] divides the application into phases

and after collecting profiling results, it feeds estimation models

achieving a final R
2 score of 0.97. We focus mainly on

loops (the usual most energy-intensive phases) and have similar

accuracy. Our difference is the fact that we provide correlation

0

0.2

0.4

0.6

0.8

1

1.2

bicg covariance doitgen fdtd-2d syr2k syrk

E
n
er

g
y
 C

o
n
su

m
p

ti
o

n
 (

J)

Actual Dynamic-proposed Estimation Static analysis Estimation [5]

Fig. 6. Dynamic proposed approach against alternative static analysis approach

results and select a small subset of the features provided,

to make simpler models and reduce the profiling phase time

overhead, as well as our focus on designing a method for adding

new targeted platforms easily. Finally, the comparison with a

tool of similar purpose based on static code analysis approaches

is very interesting for the completeness of this manuscript. The

work in [5] proposes a simple and extensible energy estimation

approach based on features retrieved from static analysis of the

compiled application and more specifically from the assembly

language. This approach is less accurate (R2
≈ 0.92), while

it requires additional user input that is not always easy to

obtain (eg. the number of iterations of each loop body). Figure

6 presents the results for 6 representative applications from

the Polybench suite. The average error is 0.14 Joules for the

proposed approach, while the static method has an average error

of 0.24 Joules.

V. CONCLUSIONS

A complete methodology for designing practical analysis

tools to be used by developers for estimating energy con-

sumption for running an application on different embedded

devices was presented. The introduced framework uses random

synthetic loops, popular profiling tools and regression methods.

The proposed approach achieves similar effectiveness compared

to related state-of-the-art tools but focuses on building an

extensible solution that can be part of SDK tools. Particular

emphasis was placed on studying the correlation between

profiling results and energy as well as the tool’s capabilities

to add new targeted platforms in an easy and convenient way.

REFERENCES

[1] S. Georgiou, S. Rizou, and D. Spinellis, “Software development lifecycle
for energy efficiency: techniques and tools,” ACM Computing Surveys

(CSUR), vol. 52, no. 4, pp. 1–33, 2019.
[2] M. Bazzaz, M. Salehi, and A. Ejlali, “An accurate instruction-level energy

estimation model and tool for embedded systems,” IEEE transactions on

instrumentation and measurement, vol. 62, no. 7, pp. 1927–1934, 2013.
[3] G. Callou, P. Maciel, E. Tavares, E. Andrade, B. Nogueira, C. Araujo,

and P. Cunha, “Energy consumption and execution time estimation of em-
bedded system applications,” Microprocessors and Microsystems, vol. 35,
no. 4, pp. 426–440, 2011.

[4] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level
cross-platform power and performance estimation,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2016.

[5] C. Marantos, K. Salapas, L. Papadopoulos, and D. Soudris, “A flexible tool
for estimating applications performance and energy consumption through
static analysis,” SN Computer Science, vol. 2, no. 1, pp. 1–11, 2021.

[6] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,” URL:

http://www.cs.ucla.edu/pouchet/software/polybench, 2012.

