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Abstract—In this paper, a novel approach of the KNOWM’s
physical memristor behavior is introduced. It has been experi-
mentally observed that this memristor, under certain conditions,
can behave as a static nonlinear resistor. This inherent property of
the KNOWM’s memristor prompts its use as a nonlinear reistor
in chaotic circuits. Therefore, in this work, for the first time,
the KNOWM memristor is used as a static nonlinear resistor
in a well-known chaotic oscillator circuit. In order to examine
circuit’s dynamical behavior a host of nonlinear simulation tools,
such as phase portraits, bifurcation and continuation diagrams,
as well as maximal Lyapunov exponent diagram, are used.
Interesting phenomena related to chaos theory are observed.
More specifically, period-doubling route to chaos, crisis phenom-
ena, antimonotonicity, hysteresis and coexisting attractors, are
investigated.

Index Terms—Antimonotonicity, bifurcations, chaos, coexisting
attractors, hysteresis, KNOWM memristor, nonlinear resistor

I. INTRODUCTION

Chua in a seminal paper in 1971 [1] identified a theoretical
symmetry between the linear resistor (voltage versus current),
linear capacitor (voltage versus charge), and linear inductor
(magnetic flux linkage versus current). From this symmetry he
inferred the characteristics of a fourth fundamental nonlinear
circuit element, linking magnetic flux and charge, which he
called memristor.

Therefore, the memristor, is a nonlinear two-terminal elec-
trical component relating electric charge and magnetic flux
linkage [2]. Moreover, in contrast to a linear (or nonlinear)
resistor the memristor has a dynamic relationship between
current and voltage including a memory of past voltages or
currents. In more details, in a memristor, when the current
flows in one direction, its resistance decreases and vice versa
[3]. When the current flow stops, memristor retains its final
state. As a consequence the i − v characteristic curve of a
memristor has a form of a hysteresis loop, which is pinched
in the origin. This is one of the well-known fingerprints of the
memristive elements driven by bipolar periodic signals of any
amplitude and frequency [4].

However, the ideal memristor that Chua introduced was
mainly of theoretic interest. On the other hand the generic

or extended memristors, that introduced by Chua and Kang in
1976 [5] were used to describe physical devices as memristors.

Therefore, until the end of the first decade of 21st century,
memristor had received little attention. However, in 2008, a
team in Hewlett-Packard labs built the first electronic passive
memristor [6]. Furthermore, in the last five years memristors
from the KNOWM Inc. are commercially available. The
KNOWM memristor [7] material stack is based on a mobile
metal ion conduction through a chalcogenide material that has
undergone a metal-catalyzed chemical reaction that creates
channels which constrain the flow of metal ions.

The aforementioned intrinsic nonlinear characteristic of
memristor has given to the research community the idea that it
could be exploited in implementing novel chaotic circuits and
systems with complex dynamics. In this direction the last three
years a few implementations of chaotic circuits with physical
memristors have been proposed [8]–[10].

In this work, a different approach regarding the use of
the KNOWM physical memristor has been followed. It has
been observed that the specific memristor for low frequencies
behaves approximately as a static nonlinear resistor. This
drawback of the KNOWM memristor could be a real in-
teresting feature, due to the fact that it could be used as
a nonlinear resistor in chaotic circuits. Therefore, by using
the experimental data of the KNOWM memristor’s nonlinear
i− v characteristic curve, the mathematical description of the
nonlinear resistor that this memristor can be used is calculated.
Next, the memristor as the proposed nonlinear resistor, is
used in the well-known Shinriki chaotic oscillator circuit.
Finally, the numerical investigation of the circuit’s dynamics is
presented. This investigation is based on the simulation results,
which are produced by using numerical tools, such as phase
portraits, maximal Lyapunov exponents [11]–[13], bifurcation
diagrams [14], and continuation diagrams [15].

The paper is organized as follows. In Section II, the
KNOWM memristor’s characteristic curve for low frequencies
as well as the proposed chaotic circuit are introduced. In Sec-
tion III, the numerical investigation of the circuit’s dynamics
is presented. Finally, the conclusions and some thoughts for
future works are discussed in Section IV.



II. THE PROPOSED CHAOTIC CIRCUIT WITH THE
PHYSICAL MEMRISTOR

The i− v characteristic curve of one of the eight KNOWM
memristors, which are contained in the 16-pin ceramic DIP
package, is depicted in Fig. 1. This i− v curve (with yellow
color) has been captured by using the Analog Discovery 2
USB oscilloscope by using a sinusoidal signal of amplitude
2.4 V and frequency 10 Hz. From Fig. 1 is obtained that the
pinched hysteresis loop of the memristor’s i− v characteristic
curve has been shrinks so much that it could be considered
as a simple nonlinear curve. Moreover, the curve (with blue
color) is the i−v characteristic of the memristor in series with
a resistor.

Furthermore, the experimental data of the memristor’s char-
acteristic iM −vM curve of Fig. 1, which are also captured in
a PC, are used in order to calculate the mathematical formula
that fits better to it. Therefore, by using the least squares
method the following equation is produced,

iM = 0.0125 · e−0.00744vM · sinh(0.68 · vM ) (1)

with R2 = 0.9996, which is presented in Fig. 2. So, for
low frequencies the KNOWM memristor could be used as a
nonlinear resistor, which its iM − vM characteristic curve is
described by Eq. 1.

Fig. 1: Experimental iM − vM characteristic curve of the
memristor.

This nonlinear resistor is used in the well-known Shinriki
circuit [16], by replacing the nonlinear positive conductance
with the KNOWM memristor. The circuit consists of one
negative conductance and a resonant circuit, with resonant
frequency,

f0 =
1

2π
√
LC2

(2)

Therefore, the schematic of the proposed circuit with the
physical memristor as the proposed nonlinear resistor, is
depicted in Fig. 3. This circuit is described by the following
set of dimensionless equations:

Fig. 2: Fitting curve with Eq. 1 of the experimental iM − vM
characteristic.

Fig. 3: The proposed chaotic circuit.

ẋ = η[(α− β)x+ i]

ẏ = −z − γy − i (3)
ż = y

where, i represents the iM − vM nonlinear characteristic
curve of Eq.(1). Also, the circuit’s normalizing variables and
parameters are:

x =
v1
vref

, y =
v2
vref

, z =
ρiL
vref

, i =
ρiM
vref

, τ =
t√
LC2

ρ =

√
L

C2
, η =

C2

C1
, α =

ρ

R3
, β =

ρ

R4
, γ =

ρ

R5
(4)

Next, the circuit of Fig. 3, is numerically studied by
using the following values of circuit’s elements: L = 0.5H ,
C1 = 50.66µF , C2 = 506.66µF , R1 = R2 = 5.6kΩ,
R3 = 0.109kΩ, R5 = 0.1kΩ and R4 - tunable, while the
power supply is ±10 V. With this set of elements’ values,
the system’s (3) dimensionless parameters values are fixed to:



α = 0.288, γ = 0.314 and η = 10, while β is the control
parameter.

III. NUMERICAL RESULTS

In this section, the dynamical behavior of the proposed
system (3), for different values of the control parameter
β, is investigated. Generally, the system has rich dynamics
that include periodic and chaotic behavior as well as other
interesting phenomena related to chaos theory.

Figure 4 presents the bifurcation diagram of variable x ver-
sus the value of parameter β, with initial conditions x0 = 0.05,
y0 = 0.01 and z0 = 0.

Fig. 4: Bifurcation diagram of x versus the dimensionless
parameter β.

From this diagram the rich dynamical behavior of system (3)
is obtained. There are regions where the system oscillates pe-
riodically and regions where the system oscillates chaotically.
This behavior is also confirmed from the maximal Lyapunov
exponent (LEmax), which is presented in Fig. 5. It is clear
that when the Lyapunov exponent is positive the existence
of chaotic behavior is observed, while when the Lyapunov
exponent is not positive the system has a periodic behavior. In
more details, as the value of parameter β increases a period
doubling route is observed and the system goes from a period-
1 behavior to a chaotic behavior. Also, for β = 0.0019383 a
sudden jump from the upper part of the diagram to the lower
part is observed. This phenomenon is known as hysteresis.

Moreover, from Fig. 4 the antimonotonicity phenomenon
[17]–[20] can be revealed. According to this phenomenon, the
system enters to chaos with the well-known period doubling
route and exits from the chaos following the reverse period
doubling route. Furthermore, in Fig. 6(a) the respective con-
tinuation diagram is presented. The continuation diagram is
produced by using as initial conditions in each step the final
states of the previous step. Also, in Fig. 6(b) the zoom in
the lower part of the continuation diagram, reveals a period
doubling route to chaos from a period-1 state. The conclusion

of the comparison of the bifurcation with the continuation
diagram, is that the system presents the phenomenon of
coexisting attractors. Two coexisting attractors (periodic and
chaotic) for β = 0.001570 and for different initial conditions
are presented in Fig. 7 respectively.

Fig. 5: Maximal Lyapunov exponent diagram versus the di-
mensionless parameter β.

IV. CONCLUSION

In this work a three dimensional autonomous circuit based
on a physical memristor was simulated. The novelty of this
work was the use of the physical KNOWM memristor as
a simple nonlinear resistor. For this reason, a mathematical
function that describes the i−v characteristic of the memristor
was produced through the fitting of its experimental data.

The autonomous circuit presented rich dynamical behavior.
Chaotic and periodic behavior were observed. Moreover, the
system presented phenomena concerning chaos theory, such
as route to chaos through the mechanism of period doubling,
the hysteresis and antimonotonicity phenomena, as well as
coexisting attractors. Furthermore, this approach presents the
usefulness of the memristor as a nonlinear resistor in electrical
circuits.

Finally as a further study of this work will be examined the
implementation of the circuit and the experimental confirma-
tion of the numerical results.
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