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Abstract—In order to use the accelerometer with high accu-
racy, it is generally necessary to calibrate the accelerometer and
correct the observation data. The authors proposed a method for
easily calibrating the accelerometer by generating the pseudo–
acceleration vector from a limited observed acceleration vector.
However, the analysis of how the pseudo–acceleration vector
works on the calibration algorithm was insufficient, and the
results are reported in this paper.

Index Terms—Accelerometer, Calibration, Pseudo data, Non–
linear optimization

I. INTRODUCTION

One of the sensors used to quantify motion is the ac-
celerometer. In recent years, with the development of MEMS
(Micro Electro Mechanical Systems) technology, multi-axis
accelerometers, which have multiple axes in one sensor pack-
age, have become popular and are widely installed in devices
related to motion, such as smartphones, drones, automobiles,
game machines and robots.

The measured values obtained from multi–axis accelerom-
eters contain errors, and typical examples of these errors are
(1) Non–orthogonality between axes that occurs during sensor
manufacturing, called misalignment, (2) The ratio of the output
(measured value of the sensor) to the input (actual acceleration
value), called the scale factor, (3) Offset error in which the
output appears even though the input acceleration is zero,
called zero–g bias and (4) Steady white Gaussian noise due
to thermal noise, dark current, etc. Since the characteristics
of these error factors differ for each sensor, it is essential
to correct them by calibration in order to use the sensor
accurately.

There are two types of calibration methods for multi–axis
accelerometers: using external devices and using only the
sensor itself. The method combining the Kalman filter and the
Six–Position method [1] is to install an acceleration sensor
on a turntable, which is a rotating device that can be finely
adjusted in angle, and measure the acceleration data for a total
of six positions while controlling each axis (x, y, z) of the
sensor so that they are precisely oriented vertically upward
and downward. This method is used to determine the misalign-
ment, scale factor, and zero-g bias. This method is suitable for
industrial accelerometers where accuracy is required mainly
because of its high accuracy in estimating error factors. Xiao
et al. proposed a more general and simple calibration method
[2] that uses information obtained from a camera-based visual

inertial system to calibrate accelerometers. This method can
calibrate accelerometers automatically and in real time using
a monocular camera. Wang et al. have proposed a method
to improve the estimation accuracy of error factors by using
a Kalman filter on acceleration data measured with a low-
precision, inexpensive turntable [3]. These methods require
external devices other than the accelerometer to be prepared.

On the other hand, a method has been proposed to determine
error factors by optimization using data measured by tilting
the sensor to any of 36 to 50 patterns without requiring
external devices such as turntables other than accelerometers
[4]. Although it enables accurate estimation of correction
parameters without the use of external equipment, there are
some issues such as the large number of postures required and
the time required for data acquisition. To solve this problem,
Ariyama et al. proposed a simple method to calibrate the
sensor by measuring only the acceleration data of six postures
in which each axis is vertically upward or downward and
pseudo–generating the acceleration data of the unmeasured
postures [5].

In this paper, we report the results of a study of the method
in [5], because it was not sufficiently analyzed how pseudo–
acceleration vector acted on the calibration algorithm.

II. CALIBRATOIN METHOD USING
PSEUDO–ACCELERATION VECTOR

In this section, we explain a calibration method for the 3–
axis accelerometer [5].

A. Error factor and correction model of accelerometer

Figure 1 shows a coordinate system of the 3–axis ac-
celerometer assumed in this study. The 3–axis accelerometer
has an accelerometer element for each axis, and each element
can measure acceleration in the axial direction. The coordinate
system composed by the accelerometer element is called the
accelerometer frame, and it axes define as XS , Y S , and ZS ,
respectively. In addition, the coordinate system of the 3–axis
accelerometer housing is called the body frame, and it axes
define as XB , Y B , and ZB , respectively. Furthermore, each
axes of the body frame is assumed to be orthogonal to each
other.

There are various factors that can cause errors in the 3–axis
accelerometer, in this study, we will consider three factors:
misalignment, zero–g bias, and scale factor. The misalignment



Fig. 1. Accelerometer coordinate system.

refers to the non–orthogonality of the accelerometer frame.
Ideally, the axes of the accelerometer frame should be orthog-
onal to each other, however, they are non–orthogonal in reality
caused by the placement error of the accelerometer element
in the manufacturing process. In this study, the misalignment
is defined as follows:

1) XS and XB coinside,
2) Y S lies in the plan spanned by XB and Y B .

The zero–g bias is also the placement error caused by the
manufacturing process, and is an error that acceleration is
detected even when no acceleration is applied to the sensor.
The scale factor is the ratio of the input acceleration to the
accelerometer output. The ratio of input to output is describe
”1” ideally, however, corrections are necessary due to error
effects.

Based on the above, when the error–corrected 3–axis ac-
celeration vector is aO = [aOx , a

O
y , a

O
z ]

T , the error correction
model can be expressed as

aO = T aKa(aS + ba), (1)

where aS = [aSx , a
S
y , a

S
z ]

T is the acceleration vector observed
by the accelerometer. Also, T a is the misalignment matrix,
and considering the non–orthogonality of the axes described
above, we have

T a =

 1 −αyz αzy

0 1 −αzx

0 0 1

 . (2)

Note that the element αij means the rotation of the i–axis
around the j–axis. Furthermore, Ka and ba represent the scale
factor matrix and the zero–g bias vector as follow:

Ka =

 sx 0 0
0 sy 0
0 0 sz

 , (3)

ba = [bx by bz]
T . (4)

The purpose of this calibration method is to
estimate the optimal correction parameters uacc =
[αyz, αzy, αzx, sx, sy, sz, bx, by, bz]

T .

B. Estimation of correction parameters

In order to estimate the correction parameters, we define
the following function using (1):

aO = h(aS
k ,u

acc) = T aKa(aS + ba), (5)

and we use the following evaluation function:

J(uacc) =

N∑
k=1

(
||g||2 − ||h(aS

k ,u
acc)||2

)2
, (6)

where ||g||2 is the actual magunitude of the local gravity
vector. Using the accelerations obtained from the various
postures, the parameter that minimizes (6) is the optimal
correction parameter. The procedure for estimating correction
parameters using the evaluation function is as follows:

1) To calculate the detection parameter of stationary sec-
tion, the sensor is placed in a stationary state for a certain
period of time.

2) Fix the accelerometer at an arbitrary posture and main-
tain the posture for a certain period of time. This
operation is repeated N times to obtain the acceleration
at various postures.

3) From the time series of acceleration data obtained in
2), the stationary section of each posture pattern is cut
out and averaged over the section to remove noise. The
averaged acceleration is aS

k (k = 1 ∼ N) and is used in
the evaluation equation (6).

4) Estimate the optimal correction parameter uacc
opt using

the Levenberg–Marquardt method (LM method) for the
evaluation function (6).

C. Generating pseudo–acceleration vector

This calibration method generates a pseudo–acceleration
vector using 6 acceleration vectors measured when each axis of
the accelerometer is pointed vertically upward and downward.
For example, aS

(x,+) and aS
(x,−) represent the acceleration

vectors measured when the accelerometer is pointed verti-
cally upward and downward along the XS axis, respectively.
Similarly measuring the Y S and ZS axis, the 6 acceleration
vectors use to generate the pseudo–accelerations vector are
{aS

(x,+),a
S
(x,−),a

S
(y,+),a

S
(y,−),a

S
(z,+),a

S
(z,−)}. As an exam-

ple, when generating pseudo data for a space where the XS ,
Y S , and ZS axes are all in the + direction as shown in Fig.
2, using the acceleration vectors {aS

(x,+),a
S
(y,+),a

S
(z,+)}, it is

expressed as

aP (θ, ϕ) = (aS
(x,+) cos θ + aS

(y,+) sin θ) cosϕ+ aS
(z,+) sinϕ.

(7)
Note that θ = ϕ = 0 ∼ π

2 . In this way, XS , Y S , and ZS

axes are selected from the 6 measured acceleration vector and
substituted into (7) to generate the pseudo–acceleration vector
when the accelerometer is pointed in any direction for 360◦.



Fig. 2. Generating the pseudo–acceleration vector.

III. ANALYSIS AND DISCUSSION

In this chapter, by considering the difference between the
pseudo–acceleration vector and the observed acceleration vec-
tor, we will discuss the influence of the pseudo–acceleration
vector on the parameter estimation results.

A. Expressions for generating pseudo–acceleration vector

The ideal acceleration vector aO for a space in which the
XS , Y S , and ZS axes are all in the + direction, unaffected by
misalignment, scale factor, and zero–g bias, can be calculated
using the local gravity g:

aO = (g(x,+) cos θ + g(y,+) sin θ) cosϕ+ g(z,+) sinϕ

=


 g

0
0

 cos θ +

 0
g
0

 sin θ

 cosϕ+

 0
0
g

 sinϕ.

(8)
Then, when aO is affected by misalignment, scale factor and
zero–g bias, the acceleration vector aS can be calculated from
(1):

aS = (T aKa)−1aO − ba. (9)

Looking at (9), we see that the zero–g bias vector ba is
always constant, and is independent of the direction of the
ideal acceleration vector aO.

Now, the observed acceleration vector used for the cali-
bration method described in the previous chapter was the 6
acceleration vector measured with each axis pointing vertically
upward and downward. This observed acceleration vectors
{aS

(x,+),a
S
(x,−),a

S
(y,+),a

S
(y,−),a

S
(z,+),a

S
(z,−)} are generated

from (9). And then, substituting (9) into (7) and rearranging

TABLE I
SET VALUES OF THE NINE CORRECTION PARAMETERS IN THE

SIMULATION.

Error factor Variable Value

misalignment
αyz 0.0049
αzy -0.0055
αzx 0.0079

scale factor
sx 0.9908
sy 1.0068
sz 1.0066

zero–g bias
bx 0.0793
by -0.0024
bz 0.0636

it, the pseudo–acceleration vector when the XS , Y S , and ZS

axes are all in the + direction can be expressed as follows:

aP (θ, ϕ)

= (aS
(x,+) cos θ + aS

(y,+) sin θ) cosϕ+ aS
(z,+) sinϕ

= (T aKa)−1{
(g(x,+) cos θ + g(y,+) sin θ) cosϕ+ g(z,+) sinϕ

}
−ba {(cos θ + sin θ) cosϕ+ sinϕ}

= (T aKa)−1aO − ba {(cos θ + sin θ) cosϕ+ sinϕ}
(10)

From (10), the first term agrees with (9), therefore the gener-
ated pseudo–acceleration vector is equivalent to the observed
acceleration vector even if the angles θ, ϕ are arbitrarily set.
On the other hand, the zero–g bias vector ba in the second
term depend on the angle θ and ϕ given when generating the
pseudo vector. Cconsequently, depending on how the angle
θ, ϕ is given, there is a possibility of generating the pseudo–
acceleration vector that does not reflect the zero–g bias vector,
hence care must be taken.

B. Number of pseudo–acceleration vector used for calibration
and accuracy of parameter estimation

In this section, we evaluated the accuracy of parameter esti-
mation against the number of the pseudo–acceleration vector.
Table I is the parameters to be calibrated set in this simulation.
The observed acceleration vectors were generated from (9)
using the parameters in Table I, and used to estimate the
correction parameters and to generate the pseudo–acceleration
vector. The number of the acceleration vector was varied
up to 6 ∼ 30, and the angles θ, ϕ were set randomly. The
correction parameters were estimated following the procedure
described in Chapter 2. The estimation accuracy was evaluated
as the standard deviation of the difference between the true
and estimated parameters shown in Table I after 30 trials of
parameter estimation.

Fig.3 shows the estimation accuracy of the correction pa-
rameters estimated using only the observed acceleration vec-
tors (i.e., the correction parameters estimated using the method
in [4]). The figure shows that the estimation error of the
correction parameters decreases as the number of observation
vectors increases.



Fig. 3. Parameter estimation accuracy evaluation for each number of observed
acceleration vector.

Fig. 4. Parameter estimation accuracy evaluation for each number of pseudo–
acceleration vector.

On the other hand, Fig.4 shows the estimation accuracy of
the correction parameters estimated using blended the pseudo–
acceleration and 6 observed acceleration vectors. First, the
estimation accuracy of misalignment is improved by increasing
the number of postures. In particular, for misalignments αyz

and αzx, there is no difference in estimation accuracy com-
pared to estimation using only observation vectors. Second,
the estimation accuracy of the scale factor and zero–g bias
decreased as the number of postures increased. This may be
due to the fact that the estimation was performed using the
pseudo–acceleration vector that did not reflect the zero–g bias
vector analyzed in the previous section.

IV. CONCLUSION

This paper showed how the pseudo–acceleration vector
affects the calibration algorithm. The analysis results suggest
that the calibration accuracy may be affected by the method

of generating the pseudo–acceleration vector. In future work,
we would like to study the method of generating pseudo data
considering the zero–g bias vector.
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