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Abstract—Internet of Things devices are commonly utilized
in smart homes to provide smart services such as lighting,
entertainment, and easy access, but they are also employed
to warn occupants in the event of an emergency. Due to the
computationally intensive nature of existing Neural Network
implementations, data must be transmitted to the cloud for
analysis to produce intelligent machines. TinyML is a promising
approach that the scientific community has proposed as a method
of constructing autonomous and secure devices that can collect,
analyze, and output data without requiring it to be transferred
to remote entities. This work presents a TinyML-based system
for detecting hazardous gas leaks. The system may be trained to
detect irregularities and notify occupants using BLE technology
via a message sent to their smartphones, as well as through
an integrated screen. Two different test cases are presented and
evaluated via experiments. For the smoke detection test case the
system achieved an F1-Score of 0.77, whereas for the ammonia
test case the evaluation metric of F1-Score is 0.70.

Index Terms—TinyML, machine learning, gas detection, con-
strained hardware, microcontrollers, sensors

I. INTRODUCTION

Increased scientific interest is observed in monitoring Indoor
Air Quality (IAQ) as an important procedure for people with
health related issues such as respiratory diseases. Over the
years, many IAQ monitoring systems have been implemented
for various environments such as homes, schools, hospitals,
and so on. The previously proposed IAQ systems can measure
and monitor various indoor pollutants including nitric oxides
(NOx), O3, carbon oxides (COx), sulfur dioxide (SO2), and
Volatile Organic Compounds (VOCs), that cause various health
effects [1], [2].

The majority of implemented IAQ monitoring systems are
utilizing Internet of Things (IoT) devices and are based on
Wireless Sensor Networks (WSNs). These systems collect in
real-time different types of sensory data and transmit them on
the cloud, where are stored, analyzed, and processed. However,
a major challenge that arises from the broad use of IoT mon-
itoring systems is the security and the privacy of the people’s
homes collected data. Hence, the research community focused
on this challenge and developed alternative and emerging
approaches to decrease the risk of sensitive data leakage [3].

One alternative approach is enabling edge intelligence. The
use of intelligence on edge devices can result in the local
processing of data and therefore privacy-aware processing.
Furthermore, despite the security advantages, data results can
be extracted in real-time, and the developed devices could be
small, low-cost, low-power and autonomous [4].

In this work, an IAQ based on Tiny Machine Learning
(TinyML) for real-time gases leakage and smoke detection
system is presented. The system collects sensors’ data and
processes it on the edge with the use of the TinyML technol-
ogy. To the best of our knowledge this is the first implemented
IAQ TinyML-based system.

The rest of this paper is organized as follows. Section II
presents previous work regarding IAQ monitoring. Section III
presents the technology of TinyML. Section IV introduces the
TinyML-based system including both hardware and software
details. Finally Section V concludes on the work’s findings
and discusses future plans.

II. PREVIOUS WORK

Gas detection and IAQ monitoring systems were proposed
over time, utilizing different types of sensors, architectures,
and methods of data processing. Spachos et al. [5] proposed
a real-time CO2 monitoring system consisting of sensor
nodes, simple relay nodes, and a control room system. Each
sensor node transmits the data packets through a path of
available relay nodes to the control room, where they are
stored. The data is stored, processed, and monitored using
the MonArch, a scalable monitoring system that is capable of
storing and processing monitoring values. The advantages of
the proposed system are real-time data aggregation, robustness
to interferences, drop-and-play units, and offline monitoring in
a complex indoor environment.

The iAirCO2 [6] is an IAQ system that monitors the CO2

by using an MHZ19CO2 sensor and stores the ambient data in
a SQL server database. The data transmitted via Wi-Fi, with
the use of an ESP8266 MCU and the .Net web services, can
be accessed only from authorized users. Also, the messages
are encrypted and signed, while the web services use SSL
certification for the authentication. The system’s user can
access the data over a web browser or a smartphone application
and set a threshold for real-time notifications, such as e-
mail, SMS, or smartphone notifications. The proposed system
focus on providing detection of poor air conditions in an
environment, like a home, while the ambient data can help the
clinical professionals to analyze the history of IAQ parameters
of a patient’s environment.

In study [7] an artificial intelligent-based multiple haz-
ard gas detector system, mounted on a motor vehicle-based
robot that can be remotely controlled, was proposed. The
system uses an array of sensors for the classification of



three hazardous gases in residential buildings; cigarette smoke,
inflammable ethanol, and off-flavor from spoiled food. Also,
it uses three different ML algorithms; k-Nearest Neighbors
(kNN), Support Vector Machine (SVM), and Softmax regres-
sion, in which the input vector is the feature set generated
from the sensor array. The system’s training is executed
automatically with the use of MatLab.

Taheri et al. [8] implemented a dynamic indoor model to
predict CO2 concentrations with the use of various Machine
Learning (ML) algorithms, like SVM, AdaBoost, Random
Forest, Gradient Boosting, Logistic Regression, and Multilayer
Perceptron. The model’s accurate results are used to modulate
in real-time the ventilation rate of a campus classroom, where
the data was collected, while the energy consumption of the
heating, ventilation, and air conditioning fan can reduce by up
to 51,4% from the standard’s levels.

III. TINYML

The majority of IoT devices are not intelligent, and those us-
ing ML models collect information and transfer it to the cloud
for analysis. The rationale for transmitting data to a remote
entity is dependent on the type of process through which data
must pass. The enormous, complex nature of algorithms and
ML models necessitates more processing power and resources
than a tiny IoT device can deliver. This leads also to a massive
volume of data that the device is incapable of storing. IoT
devices are programmed to communicate with other intelligent
devices via wireless technologies. The data being transmitted
is frequently not safeguarded, and the devices are being
considered to lack adequate security features.

TinyML is a relatively new emerging technology that is
garnering increased interest from researchers [19]. The tech-
nology combines careful hardware and software design and en-
ables the deployment of ML models and Deep Learning (DL)
algorithms on small, reasonably priced, and power-efficient
devices. With the utilization of this new field, new services,
and technologies that do not require high-end systems and
address IoT device challenges such as latency and bandwidth
constraints could be developed [20]. The IoT devices will
be used to collect, examine, and extract information locally.
This information is not shared with other entities, resulting in
more secure and private devices. Furthermore, the hardware
required to perform the operations, namely the microcontroller
(MCU), is considered to be ultra-low-powered and extremely
efficient. It typically consumes less than one milliwatt of
energy and can provide intelligence in a small time-frame.
TinyML may be the field that fundamentally changes the way
developers approach innovative and security applications for
home use today. Alerting a user for a possible gas leak or
increased risk is crucial, and there is no room for latency issues
or interruptions between communications. These devices will
perform real-time analysis and alert home residents without the
need for data transfer, giving rise to a new era of autonomous
devices in the size of a coin or credit card and the only
requirement they have is the provision of power from a battery.

Fig. 1. The fully assembled system

IV. TINYML-BASED SYSTEM

The proposed system is comprised of a development board,
two gas detection sensors, an LCD monitor that alerts the user
through text messages and a buzzer to be used on the high
volumes of hazardous gas detection. The primary goal was
to create a tiny, self-contained, low-cost, and efficient gadget
capable of detecting gas leaks and notifying the user in real
time. The device can be installed in a household setting to alert
occupants to the presence of gas or smoke. Another application
may be to alert the owner of a car leaking Liquefied Petroleum
Gas (LPG), when the system is positioned in a garage. The
system is TinyML-based, resulting in an autonomous system
that does not require an internet connection, communication
with other devices, or access to the cloud for data process-
ing and alerting. As a consequence, a system capable of
continuous monitoring and real-time notifications is created
that is not constrained by bandwidth or latency restrictions.
Additionally, the device is not a conventional IoT device that
operates on basic logical actions based on predefined criteria,
such as thresholds. The device may be educated in the home
to provide customized results and alarms. For instance, the
system will not notify residents if a trace of smoke is detected
in a residence occupied by smokers. The gadget will be trained
and learn to differentiate between cases such as when someone
smokes and when there is a genuine threat. All of this may
be achieved simply by training the model on data collected
throughout a typical day. If the system detects outliers in
this data, it will recognize an emergency and will alert the
residents.

A. Hardware

The development board of our choice was the Nano 33
BLE Sense from Arduino, a well-known and extensively used
hardware for developing TinyML applications. The board is
based on the Nordic Semiconductor nRF52840, which features
a 64-MHz 32-bit ARM®CortexTM-M4 CPU, 256KB SRAM,
and 1MB of flash memory. It works at 3.3V and has a size
factor of 45x18mm, resulting in one of the tiniest boards



available in the market. Additional information is available
on the board’s official datasheet [9].

Furthermore, the board is compatible with the Edge Impulse
web framework utilized to build the ML models, which will
be discussed in more detail in the following section. Three
different sensors were initially tested, the MQ-2, MQ-5, and
MQ-135.

MQ-2 is a Metal Oxide Semiconductor (MOS) type gas
sensor, often referred to as chemiresistors, since it detects
changes in the resistance of the sensing material when the gas
comes into contact with it. Gas concentrations may be sensed
using a simple voltage divider network. MQ-2 gas sensor
operates at 5V DC and consumes around 800mW. It is capable
of detecting values of LPG, smoke, alcohol, propane (C3H8),
hydrogen (H2), methane (CH4), and CO ranging from 200 to
10000 ppm [10].

The gas sensor MQ-5 is essential for detecting gas leaks
in home and industry. It can detect H2, LPG, CH4, CO, and
alcohol. Due to the instrument’s great sensitivity and rapid
reaction time, measurements may be obtained immediately.
Whenever the gas concentration increases, the gas sensor’s
output voltage also increases [11].

The MQ-135 gas sensor is capable of detecting dangerous
gases and smoke such as ammonia (NH3), sulfur (S), benzene
(C6H6), and CO2. As with other MQ series gas sensors, this
one also features both a digital and analog output pin. When
the concentration of these gases in the air exceeds a preset
limit, the digital pin swings high. The onboard potentiometer
can be used to adjust this threshold value. The analog output
pin generates an analog signal that may be used to estimate the
atmospheric concentration of certain gases. The sensor module
works at 5V and draws around 150 mA [12].

The LCD 1602 [13], with a display format of 16 Characters
x 2 Lines, was utilized regarding the messages for alerting
the user. Additionally, the communication chip on the Ar-
duino supports wireless protocols for information transmis-
sion. When an abnormality is discovered, the onboard BLE
module is utilized to alert the user through a mobile phone.
Finally, a case to store the system was 3D-printed [18]. Figure
1 depicts the fully assembled system.

B. Datasets
Several datasets were created in a period of two weeks.

All monitoring was carried out using the Arduino Nano 33
BLE Sense and the sensors listed above. The datasets were
created by taking advantage of Edge Impulse data forwarder,
a tool which transfers the data in real time to the web platform.
The Laboratory’s cloud infrastructure was used to store and
evaluate the results. Experiments revealed the redundancy of
utilizing all three sensors due to the high resemblance of the
MQ-2 and MQ-5 sensors. We decided to implement the MQ-2
and the MQ-135 sensors to reduce the ML model complexity
and increase the system’s power efficiency.

C. Model Training and Inference
We chose to use Edge Impulse for the model training and

inference on the device. Edge Impulse is a framework for

Fig. 2. Model Training Procedure

integrating ML models into MCUs. One of the framework’s
most notable features is its ability to handle a diverse range
of devices, including the Arduino Nano 33 BLE Sense, the
Portenta H7 [14]. And the Sony Spresense [15]. It lets users
collect data directly from their devices, classify it, and transmit
it to the cloud in the form of a dataset. Figure 2 depicts the
steps followed for the model training.

Edge Impulse contains pre-trained ML blocks that may
be fully adjusted to match the project’s requirements. Ad-
ditionally, users may acquire live categorization data while
evaluating the model’s performance on devices, ensuring that
the model performs as planned while it performs real-time
monitoring. A new impulse was designed in the aforemen-
tioned framework, consisting of a time series data block for
the data fed from the MQ-2 and MQ-135 sensors.

Next, the flatten processing block was used due to its
high adaptability on sensor data such as temperature and
other metrics similar to our use case. Figure 3 shows the
Multidimensional data using the average distance from each
cluster. As depicted, the orange data are real time classified
by the TinyML inference on device. Left side classifies gas
related to MQ-2 and right side gas related to MQ-135. For the
learning block, we used the anomaly detection block, which
utilized the K-Means algorithm. The model was evaluated
using Edge Impulse’s model testing tab. Additionally, the
impulse converted into optimized source code ready to be
deployed to Arduino Nano 33 Sense. Finally, more tests were
conducted using the Arduino IDE and Laboratory’s cloud
infrastructure to find outliers in new data.

D. Model Evaluation

To assess our models for smoke and ammonia, we looked at
the number of genuine anomalies discovered by our systems,
the proportion of anomalies detected and were indeed actual
anomalies, and lastly the overall performance of the models.
Precision, Recall, and F1-Score were utilized as evaluation cri-



Fig. 3. Data visualization related to MQ-2 and MQ-135 sensors

teria to accomplish this. Precision was 0.73, Recall was 0.84,
and the F1-Score was 0.77 for the smoke use case. The False
Negative Rate was 12% and the False Positive Rate 36%. The
ammonia test case experiments were relatively comparable,
with the largest variation being the score of 0.60 for Recall.
Precision and F1-Score metrics values were 0.85 and 0.70,
respectively. In this test case the experiments revealed a False
Negative Rate of 35% and a False Positive Rate of 20%. Table
I shows the evaluation metrics revealed from the experiments
regarding the two test cases, smoke and ammonia. The findings
are encouraging, but there is potential for improvement, which
may be accomplished through additional training and better
hardware exploitation.

TABLE I
MODEL EVALUATION

Test Evaluation Metrics
Cases Precision Recall F1-Score
Smoke 0.73 0.84 0.77

Ammonia 0.60 0.85 0.70

V. CONCLUSIONS AND FUTURE PLANNING

With recent technological advancements, households may
become even safer by warning occupants in the event of
an emergency. While IoT devices appear to be ideal for the
aforementioned use case, they are forced to transfer essential
data to the cloud for further processing to deliver intelligence
and personalized solutions using ML and DL technologies.

TinyML is a revolutionary technology that appears to be the
answer by delivering autonomous devices that do not require
internet or data transfer owing to their ability to execute ML
and DL models on-device successfully.

The present study demonstrates a TinyML-based system for
detecting hazardous gas leakage. The system may be trained to
detect and warn inhabitants of possible gas leakage or smoke
detection.

Our future agenda includes three major improvements that
will help into making the device more user friendly, safer and

overall improve the system into offering more tailored and
better results.

Our first plan is to offer the user the ability to offline
train or retrain the system with the press of a button. Offline
training is one of challenges encountered with the TinyML
technology. Recent works related to offline training [16], [17]
show encouraging results and this the sector where our efforts
are going to be focused.

The following step is to ensure the security of the system
and data transmission to the mobile device. In terms of the
system, we will investigate methods for ensuring firmware
integrity, and for data transmission, a well-established security
protocol will be employed.

Finally, based on our experiments we believe that using
more specialized sensors for each element to be detected
instead of utilizing sensors that detect several gases will
improve the alerts and the values shown to the users.
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