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Abstract—A lookup table-based check and variable node
are considered for designing low-density parity check (LDPC)
decoder architectures, using the principle of the information
bottleneck method. It has been shown that an information
bottleneck LUT operation can outperform conventional min-
sum arithmetic operation in terms of error-correction capability.
This paper presents a cost-efficient hardware implementation of
LUT-based node processing units in the decoder architecture. It
exploits the symmetry of the communication channel and multi-
input LUT decomposition to generate a reduced-size LUT struc-
ture. The LUT operations are designed as a two-level memory
subsystem enabling LUT mappings reconfiguration at runtime.
As a case study, a rate-7/10 7650-bit regular QC-LDPC decoder
is implemented on an FPGA, achieving a throughput of up to
1.345 Gbps at 10 iterations. Compared with the conventional
offset min-sum decoder, the proposed decoder increases the
throughput-to-area ratio up to 39.22% at a cost of no more than
0.08 dB decoding performance loss. In addition, the hardware
complexities of node design variants are investigated.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a class of
forward error correcting codes widely used in modern com-
munication systems, e.g. non-volatile memories, fibre optic
networks and wireless communication.

The LDPC codes can be decoded using the state-of-the-art
min-sum (MS) algorithm, which updates and exchanges two
types of messages: check-to-variable and variable-to-check
messages between check and variable nodes [1]. The message
updates are conventionally based on arithmetic operations
where operands and calculated results directly represent prob-
abilistic information, e.g., log-likelihood ratio. Another class
of novel update methods replaces those arithmetic operations
with simple lookup tables (LUTs) where equivalent operands
and results are integer values encoding exact probabilistic
information [2]–[5]. The LUT compresses input messages such
that the mutual information between the relevant codeword bits
and corresponding message is maximized. In [3] a sequential
information bottleneck (IB) algorithm is proposed to generate
deterministic LUTs which reaches a lower bit-error rate than
MS decoding. However, there is still a lack of insight into the
required hardware design. In particular, exponential growth of
LUT size with message bit widths, and the required number
of LUTs for parallelism of node processing units can be
the challenges for practical designs. Regarding the existing
hardware implementation of information-maximizing LUTs,

an ASIC solution based on combinatorial circuits has been
proposed [4]. Despite present advantage of area efficiency and
ultrahigh decoding throughput, such hardwired LUTs maintain
no flexibility for post-fabrication modifications. Furthermore,
the area saving of hardwired LUTs highly depends on the ac-
tual data patterns of lookup input-output mapping values. Thus
a deterministic analysis of hardware complexity is difficult.

The aim of this work is to develop reconfigurable LUT-
based node processing units for layered LDPC decoder archi-
tecture using the information bottleneck method. As a result,
the hardware utilization and error correction are comparable
to those of MS decoder architecture. For this purpose, the
multi-input LUT decomposition [2] is considered. A reduced-
size LUT structure is generated by exploiting the symmetric
communication channel, and the LUT sharing is introduced
to reduce the number of LUT components inside one node
processing unit. Furthermore, node processing units and cor-
responding LUT structures are implemented as a memory
subsystem with two-level hierarchy. It efficiently distributes
the large number of mapping values to large-sized ROMs and
small-sized RAMs. In this way, not only is the storage required
for mapping values reduced, but also LUT mapping changes
without hardware modification are possible.

The proposed architecture is implemented on Xilinx Zynq
UltraScale+ MPSoC ZCU104 FPGA platform in a partially
parallel manner. In particular, a rate-7/10 regular quasi-cyclic
code is evaluated under 4 bits and 3 bits message quantization.
The implemented decoder architecture can achieve maximum
24.4% area savings and 1.39x throughput-to-area ratio over
the conventional MS decoders at a cost of no more than 0.08
dB performance loss in terms of bit error rate. In particular,
the 3-bit quantized decoders achieved gigabit throughput even
when the maximum number of iterations is 10. Moreover,
an investigation into the hardware utilization of node design
variants is carried out, which provides a design guideline for
satisfying the required hardware constraint and specifications.

II. LDPC CODES AND DECODING PROCESSES

A regular LDPC code is specified by an M×N parity-check
matrix H which can be graphically represented by a bipartite
graph [6]. The two disjoint sets of a given parity-check matrix
represent: variable nodes (VNs) associated to N codeword bits
bi ∈ {0, 1}, i = {0, 1, · · · , N − 1}, and check nodes (CNs)



corresponding to M parity-check operations. The jth CN is
adjacent to ith VN if and only if Hj,i = 1 indicating a message
exchange between them. Moreover, a set of VNs adjacent to
jth CN is denoted by Nj , whereas a set of CNs adjacent to
ith VN is denoted by Mi. The degrees of CN and VN are
dc = |Nj | and dv = |Mi|. In addition, a well structured
LDPC code, quasi-cyclic (QC) codes [7] parameterized by a
lifting degree Z ∈ Z+, is widely utilized in practical systems
[8]–[10] which partitions H matrix into MZ ·NZ number of Z-
by-Z sub-matrices. The sub-matrix is a cyclic shifted identity
matrix IZ by a factor ranging in {0, 1, ..., Z − 1}.

A. Offset min-sum decoding algorithm

The typical message update operations behind CN and VN
are based on the offset min-sum algorithm [11] described by
the following equations. First, let Lcj→vi and Lvi→cj denote
extrinsic messages sent from jth CN to ith VN, and ith VN to
jth CN, respectively. Any Lcj→vi and Lvi→cj are iteratively
updated and exchanged according to

Lcj→vi =
∏

∀i′∈Nj\i

sgn(Lvi′ ) ·max( min
∀i′∈Nj\i

|Lvi′ | − β, 0),

(1)

Lvi→cj = Lch
i +

∑
∀j′∈Mi\j

Lcj′ , (2)

where Lch
i is the channel log-likelihood ratio (LLR) to mea-

sure how likely codeword bit ci is 0 or 1, whilst β is an offset
factor. Here, sgn(x) is the sign function extracting the sign bit
of x. For each CN and VN, a total of dc and dv messages are
processed from above equations. In addition, the a-posterior
probability (APP) for each codeword bit is calculated at the
end of every iteration, i.e.

LAPP
i = Lch

i +
∑
∀j∈Mi

Lcj→vi , (3)

Finally, the hard decision for each codeword bit is taken that
ĉi = 1 if LAPP

i ≤ 0, otherwise 0. The message updates repeat
until H · Ĉ = 0 where Ĉ = [ĉ0 · · · ĉN−1]T , or a predefined
maximum number of iterations imax has been reached.

III. ON THE DESIGN OF IB-LDPC DECODERS

The information bottleneck LDPC (IB-LDPC) decoders
have been proposed to replace conventional arithmetic op-
erations corresponding to (1)-(3) with simple lookup tables
(LUTs). Thus, only integer-valued messages from a small
alphabet are handled during the entire decoding process, as
opposed to a floating-point representation. The LUT design
for the node processing units is based on discrete density
evolution [2] [12] and application of the IB method [3]. The
IB method was introduced as a mathematical framework for
preserving relevant information about the variable X , while
performing compression of an observed random variable Y
which is mapped to the compressed variable T [13].

In this work, the IB decoder design with layered schedule
proposed in [5], is used. The channel is assumed to be a
symmetric BPSK AWGN channel ỹchk = f(bk) + nk with

f : {0, 1} → {+1,−1} and nk is a normal distributed random
variable with variance σ2 = N0/2. A threshold quantizer
tchk = Q(ỹchk ) is designed to maximize the mutual information
I(Bk;T ch

k ) with respect to each code bit bk, using the IB
method. All compressed messages are w bits wide.

Multiple options exist to perform the node operations when
working with IB-LUT decoders. One variant is to use a two-
input lookup table structure in the check node and in the
variable node, denoted by the ’LUT-LUT’ combination in [5].

In the ’LUT-LUT’ configuration, the CN LUT exploits the
underlying parity check equation b0 ⊕ . . . ⊕ bdc−1 = 0 and
the input messages y0, . . . , ydc−1 ∈ {0, 1, . . . , 2w − 1}dc−1 to
compute extrinsic information about each of the participating
bits bn. For example, extrinsic information about bit bdc−1

can be obtained from the messages y0, . . . , ydc−2 . Since the
number of CN LUT entries has an exponential complexity in
w bits and dc, which leads to 2w(dc−1) entries. It is suggested
to decompose that multiple-input LUT into dc−2 number
of cascade two-input partial LUTs. Thus, the corresponding
complexity is scaled to 22w · (dc−2) entries. The update
operation for the extrinsic information about b0 is:

tk+1 = Φc
i,l,k(tk, yk+1) for k = 0, . . . , dc − 3, (4)

where t0 := y0 and i ∈ {0, . . . , imax−1}, l ∈ {0, . . . , dv−1}
and k denote the different lookup tables for the individual iter-
ation, layer and cascade level of two-input LUT datapath, re-
spectively. Each LUT is designed to maxΦc

i,l,k
I(Xk+1;Tk+1),

where xk+1 = xk ⊕ bk+1 with x0 = b0. The message tdc−2

from the last two-input LUT is sent back to the corresponding
variable node.

The variable node, representing some codeword bit bk,
observes the inputs ych and extrinsic check node messages
y0, . . . , ydv−2 ∈ {0, 1, . . . , 2w − 1}dv−1. The two-input LUT
decomposition yields a mapping complexity of 22w · (dv − 1)
entries, unlike a dv-input LUT which requires 2w·dv entries.
The corresponding update operation producing one extrinsic
message is performed as

tk+1 = Φv
i,l,k(tk, yk) for k = 0, . . . , dv − 2, (5)

where t0 := ych. Each LUT is designed to maximize the mu-
tual information according to maxΦv

i,l,k
I(Bk;Tk+1). Finally,

tdv−1 is sent back to the check node.
The Φi,l,k(·) for different layers and/or iterations are based

on distinct sets of input-output mapping values. For example,
a message update at (dv−1)th layer of 0th iteration followed
by the message update at 0th layer of (0 + 1)th iteration, use
mapping sets of Φi=0,l=dv−1,k(·) and respective Φi=1,l=0,k(·).
Those mapping sets are not identical.

Another option is the ’min-LUT’ configuration, where the
minimum approximation is used in the check node [14]. The
check node inputs yn ∈ {−2w−1, . . . ,−1,+1, . . . ,+2w−1},
are assumed to have labels sorted according to the underlying
log-likelihood ratio L(bn|yn). This way the LUT mapping in
(4) can be simplified to

Φc
i,l,k(tk, yk+1) = sgn(tk) sgn(yk+1) min(|tk|, |yk+1|). (6)



To avoid any confusion in later sections, the LUTs designed
with the IB method and the 6-input LUT of FPGA resources
are called IB-LUT and FPGA LUT, respectively.

IV. PROPOSED HARDWARE ARCHITECTURE

Fig. 1 shows the top module of the proposed LDPC decoder.
The received N -bit codeword is represented by a vector form
of w-bit soft decisions. The codeword is stored in the channel
message FIFO as the input source to the decoder. Regarding
the data I/Os of node processing units, the updated extrinsic
messages yc→v and yv→c are kept in the message-passing
buffer for iterative message exchanges between variable and
check node processes. The buffering locations are decided by
the routing network, with the input from the node processing
units. In the parallel node processing configuration, P c check
node units and P c·srow variable node units are parallelized.
The srow ∈ {1, . . . , dc} denotes the row split factor and
determines the bandwidth of each check node, as the number
of output extrinsic messages per clock cycle.

In this work, any LUT mapping function is designed as
a memory structure that stores a certain number of input-
output mapping values for the iterative message update. The
overall sizes of dv · imax sets of mapping values is enormous,
specially due to the parallelism of node processing units which
is a multiple of dv · imax sets. To limit such overhead from
every node processing unit, a two-level memory hierarchy
is proposed to provide an efficient data allocation (mapping
values) over the first-level read-only memories (ROMs) and
the second-level random access memories (RAMs). In the first
level, the ROMs are devised to centrally store all dv ·imax sets
of mapping values. In the second level, each node processing
unit is represented in RAM that caches one set of mapping
values for the current lth layer of the current ith iteration.
The LUT configurator in the left of Fig. 1, periodically makes
copies of a mapping value set corresponding to the next layer
of the next iteration and write the copied sets into all RAMs
in a broadcast fashion. Overall, the read operation of the
ROMs and write operation of the RAMs are controlled by
the shown memory controller. The precise operation timings
are also determined by the update control logic in the LUT
configurator. The RAM based node processing unit as well
as the control updating are detailed below. Due to the space
limitation, the detaild of the routing network and message-
passing buffer will appear in a forthcoming extended version
of this paper.

A. Cascade datapath of decomposed IB-LUTs

An extrinsic message is generated from a node processing
unit through a series of two-input IB-LUTs in a cascade
datapath. To implement this cascade datapath with less hard-
ware overhead, the symmetry of communication channel is
exploited. Thus, the IB-LUT mappings imply an input-output
relation as shown in Fig. 2. For the input-output mapping
of check nodes, ignoring the sign bits, all four combina-
tions of inputs lead to exactly the identical magnitudes of
mapping results. On the other hand, for the input-output
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Fig. 2: Symmetric distributions over IB-LUT mappings.

mapping of variable nodes, only if both inputs are flipped
on sign bits, the magnitude of that mapping result will be
unchanged. Accordingly, it is sufficient to preserve only partial
mapping entries from both CN IB-LUTs and VN IB-LUTs,
i.e. |Φc

i,l,k(|tk|, |yk+1|)| and Φv
i,l,k(|tk|, yk), respectively. This

way the IB-LUT mapping complexities of the whole cascade
datapaths are further reduced to (dc − 2) · 22(w−1) and
(dv−1) ·22w−1 entries, at a cost of additional logic circuits to
reconstruct the sign-valued mapping result tk+1. Those logic
circuits can be simplified by applying DeMorgan’s theorem
to their corresponding Boolean expressions. An example of
cascade datapath for updating a single extrinsic message, is
depicted in Fig. 3 which implemented the (4) and (5).

B. Implementation of IB-LUT-based node processing units

A node with a degree of d updates d number of extrinsic
messages, the construction of a complete node processing
unit and its memory based implementation on FPGAs are
discussed herein. Consider the case of a check node with node
degree dc, where the corresponding dc extrinsic messages are
updated in parallel. An efficient construction reuses some of
the intermediate results tk+1 = Φc

i,l,k(·). The reusable tk+1

can be identified by using a recursive search. An exemplary
data flow graph of 6-degree check node processing unit is
illustrated in Fig. 4 where every dashed edge accounts for
a data flow of a shared intermediate result. The variable-to-
check messages (as incoming messages) and check-to-variable
messages (as outgoing messages) are denoted by yn and
ycn , respectively, for all n ∈ {0, . . . , dc−1}. Moreover, the
partial data flow including red-coloured vertices and edges is
equivalent to a case of cascade datapath in Fig 3a. The same
recursive search can be applied in variable nodes.

The next step is to address the FPGA implementation of
complete node processing units. As for the aforementioned
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two-memory hierarchy in the decoder architecture, the dv·imax

sets of mapping values are stored across a batch of central
ROMs. Multiple RAMs keep only one mapping value set
associated with Φi,l,k(·) of certain indices i and l for all k.
Each RAM is updated once in every layer, such RAM update is
realized as a LUT remapping operation. To satisfy the memory
access granularity of the ROM and RAMs, the Distributed
RAM (LUTRAM) is employed as the target memory solution
to implement each RAM whilst the ROM is implemented
by Block RAM (BRAM). The LUTRAM is based on a 6-
input logic LUT component with capacity of 64 bits which is
sufficient to store all mapping values of one two-input LUT,
and it supports an on-the-fly lookup table remapping. On the
other hand, a BRAM supports a true dual-port mode with
capacity of 36 kibibits where a batch of BRAMs is feasible
to store the overall dv · imax sets of mapping values.

The implementation of ROMs and RAMs is demonstrated
in Fig. 5 as an example for a 4-bit quantized decoders.
According to the symmetric distribution of LUT (refer to
Fig. 2), the number of necessarily cached mapping values,
i.e. |Φc

i,l,k(|tk|, |yk+1|)| for all tk and yk+1 ∈ {0, . . . 2w − 1},
is 64, each of which is 3 bits wide. To improve the memory
access bandwidth, the RAM is designed as a bank interleaving
structure. So that any two consecutively indexed mapping
values can be read and written from/to a RAM in one clock
cycle, this is considered a read/write of one RAM page
data. More specifically, every memory bit of mapping value

is constructed by two LUTRAMs, each of which from one
of interleaving banks. As for the ROM implementation, the
output ports of every BRAM are configured to match the bit
width of RAM page, and therefore each page data of BRAM is
a concatenation of two consecutively indexed mapping values.
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where the control signal write en[x] for x = 0, 1, 2, switches
the read/write mode of LUTRAMs.

C. Memory controller for IB-LUT remappings

The ROM read operations and RAM write operations
dictated by the memory controller generate the read/write
addresses with their enable signals to perform the LUT remap-
ping operation over node processing units. To easily describe
an arbitrary LUT remapping operation, let l′ = (l+1) mod dv
and i′ = b(l + 1)/dvc+i denote the layer and iteration indices
of the next message update operation, respectively. Thus, an
l′ with i′ indicates either (l+ 1)th layer of ith iteration or 0th
layer of (i+ 1)th iteration.

At the end of current lthe layer of ith iteration, the LUT
remapping operation overwrites RAM pages with the mapping
values of Φi′,l′,k(·). During the LUT remapping operation, the
involved node processing units are temporarily inaccessible for



extrinsic message update. To accelerate the completion of LUT
remapping, the clock rate of the write clock CLKwr driving
the memory controller, is configured to be higher than the
clock rate of system clock CLKsys driving the rest of decoder
functionalities. The default settings are CLKwr = 2·CLKsys.
Nevertheless, the remapping duration cannot always guarantee
not to stall the decoding operation of the next layer or next
iteration due to the maximum frequency limit and routing con-
gestion in FPGA synthesis. To further shorten the remapping
duration, this work proposes a base-delta (B+∆) compression
scheme inspired by [15]. It is based on an observation that any
pair of Φi,l,k(·) and Φi′,l′,k(·) generally shows quite slight
variation in their mapping values. It enables the use of the
proposed B+∆ scheme that calculates base values and delta
values between identically-indexed mapping values of Φi,l,k(·)
and Φi′,l′,k(·), where the base and delta values indicate the
common value and variance, respectively. Moreover, every
nonzero delta value and its corresponding mapping index are
recorded in the delta value ROM and delta address ROM,
respectively. The workflow of the compression (in offline
mode) and decompression is depicted in Fig. 6.
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During the IB-LUT remapping, a decompressor recovers
the original mapping values by adding base values to delta
values. Consequently, only the LUT entries marked by delta
address ROM are remapped, reducing the write cycles for the
corresponding RAMs. According to a preliminary study of the
target QC code, the RAM write latency for 3-bit quantized
decoder can be hidden within the message-passing duration.
On the other hand, for a 4-bit quantized decoder, the write
latency only introduces one clock cycle stall to the message
update for l′th layer of i′th iteration.

V. EVALUATION

The proposed decoders were implemented on a Xilinx
ZCU104 development board with Zynq UltraScale+ MPSoC
device. The RTL design was written in VerilogHDL and
synthesised using Vivado 2019.2. The evaluation considers a
QC code with code rate-7/10, codeword length of N = 7650
bits, node degrees of dv = 3, dc = 10 and lifting degree
Z = 765. The decoder implementation is based on a partially
parallel architecture operated in a layered schedule, where only
255 out of 765 CN units and 510 out of 7650 VN units are
explicitly built. As for the proposed architecture, both LUT-
LUT and min-LUT node operation setups are evaluated. In
addition, an 4-bit offset min-sum (OMS) decoding experiment

with an offset factor of β = 1 is considered as the baseline
comparison. The messages in the evaluated OMS decoder are
quantized via the uniform thresholds of which the distance
between any two consecutive thresholds is ∆ = 0.14. In Fig.
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Fig. 7: Bit error rate results.

7, the bit error rate (BER) performance of all decoder settings
are presented. The maximum decoding iteration imax of 10 are
configured for decoding every codeword. Once the received
codeword has been decoded imax iterations but the error bits
still exists, it will be counted as one frame error. For every
signal-to-noise ratio (SNR) instance, at least 1000 frame errors
present. As observed in the results, the 3-bit LUT decoders
show the performance loss of up to 0.22 dB and 0.08 dB
w.r.t. the 4-bit LUT and 4-bit OMS decoders, respectively.

For a fair comparison, the implementation of all de-
coders have identical structures of message-passing buffers
and routing networks. The CLKsys was set to a max-
imum frequency fmax according to each place and
route result. The decoding throughput is calculated as
(N × fmax)/(latency × number of iterations), where the N
and latency denote codeword length and the latency of one
decoding iteration at unit of clock cycle, respectively. Due
to the fact that every received codeword with variant error
pattern may take different iterations to fully correct error bits,
the normalized throughput Tnorm is more preferable as the
evaluation metric, accounting for the throughput per iteration.
Another evaluation metric to address hardware efficiency is
throughput-to-area ratio (TAR), expressing the fraction of
normalized throughput contributed by every equal amount of
hardware resources. The implementation results of the decoder
architectures are summarized in Table I.

Comparing the min-LUT decoder to LUT-LUT decoder, the
former shows 17.2% and 20.2% less area overhead (FPGA
slices) than the latter one, in 4 and 3 bits, respectively.
Regarding throughput-to-area ratio 3 bit setup can achieve 2.1x
and 2.0x hardware efficiency under the LUT-LUT decoder and
min-LUT decoder, respectively. Another appealing option of
utilizing 3-bit min-LUT decoder is its 24.2% area saving and
1.39x hardware efficiency compared to the 4-bit offset min-



TABLE I: Implementation results of the decoder architectures

Decoder type This work:
LUT-LUT

This work:
min-LUT

Offset
min-sum [11]

Codeword [bit] 7650 (z = 765, dv = 3, dc = 10, code rate: 7/10)
CN & VN parallelism (255, 510)

Quantization [bit] 4 3 4 3 4
Resource utilization

FPGA Slice1[kCLB] 19.85 13.48 16.44 10.76 14.20
Slice LUT [kLUT] 98.14 51.93 81.32 43.36 59.21

Register [kFF] 125.58 84.27 126.92 83.47 114.93
BRAM [36KiBit] 68 51 60 43 57
fmax [MHz] 92.5 132.8 121.5 160 150

Latency [cycle/Iter.] 94 91 94 91 90
Tnorm [Gbps/Iter.] 7.53 11.16 9.89 13.45 12.75
TAR [Mbps/kCLB] 379.35 827.95 601.62 1250 897.89

1 A configurable logic block (CLB) contains eight 6-input LUTs and 16 flip-flops.

sum decoder design. Such area saving and hardware efficiency
is because of the reduced bit width over all messages, and less
routing complexity inside the node processing units.

Apart from evaluations of decoder architectures, it is prefer-
able to provide a clear guideline for designers to consider
which type of node processing units is well suited for re-
quired decoder specifications and hardware constraint. Table
II summarizes the memory and logic overheads of variant
node designs to implement node processing units. It includes
individual evaluations of offset minimum sorter, minimum
sorter, summation, check node LUT and variable node LUT.
This way, any particular logic optimization from the FPGA
synthesis tool can be disassociated. Since OMS setup does
not need any memory, it only costs logic LUTs to implement
node operations. As for the BRAM usages in LUT-based node
designs, they are actually shared with all parallel nodes as the
central ROMs. As observed, the overhead of 4-bit min-LUT
configuration requires overhead of 1.83x slice LUTs compared
to that of 4-bit offset min-sum configuration, it gains better
decoding performance up to 0.134 dB. Thus, it can be a
good candidate satisfying requirement of high error correction
capability at a reasonable hardware cost. As for the trade-off
between hardware efficiency and decoding performance, the
3-bit min-LUT configuration can be a recommended choice
that especially costs 12.9%-72.7% less slice LUTs than those
of the other configurations.

TABLE II: Logic and memory overheads of node variants

Node design Logic LUT LUTRAM1 BRAM
Offset minimum sorter 4 bit 41 0 0

Minimum sorter 4 bit 35 0 0
3 bit 33 0 0

Check node LUT 4 bit 54 54 8
3 bit 26 18 8

Summation (accumulator) 4 bit 13 0 0

Variable node LUT 4 bit 28 36 3
3 bit 6 8 3

1 LUTRAM is a dynamically reconfigurable type of logic LUT, which is based on the
same 6-input Slice LUT inside Xilinx FPGA devices.

VI. CONCLUSION

In this work, an FPGA implementation of LUT-based
node processing units was demonstrated in both 3-bit and
4-bit layered LDPC decoder architectures. To mitigate the
large storage overhead of LUT mapping values, a reduced-
size LUT structure and a memory subsystem with two-level

hierarchy are proposed. That provides efficient data allocation
of mapping values over the FPGA memory resources, as well
as reconfiguability for new patterns of LUT mapping values
without modifying the underlying hardware. A study of rate-
7/10 QC-LDPC code has been implemented. It achieves a
normalized throughput up to 13.45 Gbps with the maximum
throughput-to-area ratio of 1250 Mbps/area in addition to
5.1%-24.2% area saving. According to the comprehensive
evaluation, the 3-bit min-LUT decoder showed decoding per-
formance close to 4-bit OMS decoding, but with less hardware
complexity. Furthermore, since a 3-bit decoder requires fewer
bits to represent messages throughout the entire architecture,
it is more beneficial for designs targeting low power and low
routing complexity. Thus, it is a candidate for cost-efficient
applications of reliable error correction using LDPC codes.
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