
Virtual-Channel Flow Control
Across Mesochronous Clock Domains

Giorgos Dimitrakopoulos, Anastasios Psarras
Electrical and Computer Engineering

Democritus University of Thrace, Xanthi, Greece

Chrysostomos Nicopoulos
Electrical and Computer Engineering

University of Cyprus, Nicosia, Cyprus

Abstract—The Network-on-Chip (NoC) is physically spread
over the entire chip and it should readily support communication
across multiple clock domains. In NoCs, the synchronization
required for sending data across clock domains should be
seamlessly combined with the flow control rules that govern
data transfer on NoC links. In this work, we focus on im-
plementing virtual-channel flow control on links that connect
NoC components placed across mesochronous clock domains. In
mesochronous interfaces, the connected modules receive the same
clock signal but the edges of the arriving clock signals exhibit an
unknown phase relationship. To this end, we propose FastCross a
loosely-coupled synchronization architecture for NoC links with
VC flow control that simplifies hardware implementation by
enabling VC buffer sharing and interface consolidation.

Index Terms—Network-on-Chip, Virtual-channel flow control,
Clock-domain crossing, Mesochronous interfaces.

I. INTRODUCTION

Technology scaling comes with significant challenges due to
slow wires and Process/Voltage/Temperature (PVT) variations.
These challenges make fully synchronous design increasingly
untenable over large chip areas. Being innately distributed
across the chip, the Network-on-Chip (NoC) – the on-chip
communication backbone of modern SoCs – is also afflicted
by these issues. In this context, the Globally Asynchronous,
Locally Synchronous (GALS) design methodology mitigates
the difficulty of global timing closure [1]. In this case, the
chip is composed of islands (clock domains) that operate
under a fully synchronous approach, while the communication
between domains is done asynchronously [2], [3], [4].

In this work, we focus on communication across
mesochronous clock domains, where the clocks of each do-
main are driven by partially independent clock trees that
operate under the same frequency, but with an arbitrary but
fixed phase difference [5]. Signals that cross these clock-
domain boundaries – a process commonly referred to as Clock
Domain Crossing (CDC) – have to be synchronized before
they can be used in the receiving domain [6], [7].

A GALS NoC implementation can take many forms. The
most flexible one would enable CDC in any part of the
NoC [8]. In this case, the NoC itself would be composed of
different sectors operating in different clock domains. This is
achieved by allowing any point-to-point link in the NoC to
belong to different clock domains.

The physical implementation scalability of NoCs should
not be limited by the architectural features that they need

to support to provide high communication performance and
Quality-of-Service (QoS) guarantees. To achieve these goals,
NoCs typically employ Virtual Channels (VCs) that allow
for traffic separation (isolation) by assigning different traffic
classes to different VCs [9], [10], [11]. This separation is also
instrumental for the correct operation of higher-level protocols
(e.g., cache coherence), which require isolation between the
various message classes to avoid protocol-level deadlocks [12].
Also, VCs are used to break channel dependencies and avoid
network-level deadlocks under adaptive routing [13].

In this work, our goal is to highlight the intricacies of
mesochronous CDC on links with VC flow control and
to introduce a new efficient architecture that would reduce
the overall hardware cost without sacrifycing throughput.
The proposed approach, called FastCross, leverages existing
mesochronous synchronizers to provide a loosely-coupled
communication across mesochronous clock domains. In this
way, VC buffer sharing can be safely applied and neighboring
interfaces can be consolidated to jointly synchronize data and
flow-control signals transferred across neighbor NoC compo-
nents.

II. VC FLOW CONTROL ON MESOCHRONOUS LINKS

Transferring data safely across two mesochronous clock
domains can be performed with various techniques.

A. Mesochronous Synchronizer

The most scalable approach relies on the “n-flop” syn-
chronizer [5], [14], [15], as shown in Fig. 1. The n-flop
synchronizer consists of n registers placed in parallel in the
transmitter domain (n = 4 in Fig. 1) and two free-running
counters that are monotonically incremented in every cycle.

data_snd
data_rcv

clk_snd clk_rcv

Receiver's clock domainSender's clock domain
mod 4 counter

++

mod 4 counter

++

en

en

en

en

Fig. 1. The n-flop mesochronous synchronizer, for n = 4.

In the forward direction, each flit is written to one of the
four registers of the mesochronous synchronizer. The register
that is activated for each write is selected by the write pointer
of the mesochronous synchronizer. Both the data registers and
the write pointer are driven by the sender’s clock.

On the receiver’s side, a new word is read out of the
synchronizer every cycle of the read domain. The register that
is being read is selected by the read pointer, which is driven
by the receiver’s clock.

The read and write pointers are free-running counters (mod-
ulo 4), which get incremented on every positive edge of their
clock. The increments occur irrespective of the validity of the
data that gets written to, or read out of, the mesochronous
synchronizer. For safe crossing between the two mesochronous
clock domains, the values of the two pointers always differ by
two. This difference is guaranteed during the reset phase of
the synchronizer [16].

B. Tightly coupled VC Flow-Control across Clock Domains

To divide a physical channel into V VCs, the receiving side
of the link should provide as many independent queues as the
number of VCs. Each VC is independently flow controlled
thus disallowing any dependencies between VCs to emerge.

To support VC flow control across mesochronous clock
domains can be done either by employing one synchronizer
per VC at the receiver’s side [17], [18] or by using a dual-
clock mesochronous queue [19] per VC. In this case, the
transferred data is written directly to the appropriate VC,
assuming that the corresponding queue is not full. In both
cases, synchronization and flow-control are tightly coupled and
closely integrated.

While the aforementioned approach may seem attractive
due to its low complexity, there are significant arguments
against its use: (1) it is not advisable to incorporate numerous
CDC points on a single clock boundary (i.e., one such point
per VC), because both the probability of failure and the
needed verification effort increase markedly; (2) by statically
partitioning the VC buffers, one precludes the option of VC
buffer sharing, which is a technique frequently employed by
state-of-the-art NoC designs to maximize buffer utilization;
(3) the negative impact on hardware cost may be dramatic,
because each VC buffer must be sufficiently deep to store all
in-transmission data – as dictated by the round-trip delay – to
achieve full-throughput performance.

C. Loosely Coupled VC flow-Control Synchronization

To minimize the number of independent CDC interfaces
is to abandon the tightly coupled approach and employ a
loosely coupled setup where synchronization and buffering are
separated as shown in Fig. 2. In this case, the synchronizer
merely acts as a delay element from a flow-control perspective.
This decoupling allows us to adopt a credit-based VC flow
control and buffer sharing.

To implement VC flow control using credits, the sender
keeps a credit counter for each downstream VC. A new flit

data/vc_id

valid

Receiver's clock domain

input VC buffers

credit
counters

Sender's clock domain

data/vc_id

valid

pop_vc
credit

update

output
port

mod 4 counter

credit/vc_id

valid

en

en

en

en

++

en

en

en

en

++

credit/vc_id

valid

mod 4 counter

mesochronous synchronizer

clk_snd

clk_rcv

Fig. 2. FastCross interfaces connecting mesochronous clock domains. For-
ward data and backward credit updates are separately synchronised using
4-deep mesochronous synchronizers. The read/write pointers of the two
synchronizers are shared in both directions.

that belongs to the ith VC can be sent on the channel as long
as there is at least one empty slot in the downstream buffer for
the ith VC. Since the state of each VC is kept at the sender, the
receiver only needs to send backwards a credit-update signal,
including a VC ID, which indexes the VC that has one more
available credit for the next cycle. On a credit update referring
to the jth VC, the corresponding credit counter is increased.

In the forward direction, each flit – together with the
VC ID that describes the VC the flit belongs to, and a
validity bit – are written to one of the four registers of the
mesochronous synchronizer. The register that is activated for
each write is selected by the write pointer of the mesochronous
synchronizer. Both the data registers and the write pointer are
driven by the sender’s clock. The corresponding flit can leave
the sender and be written into the synchronizer, as long as
the selected VC has at least one credit available, which is
consumed while the flit is still on the sender’s side.

On the receiver’s side, a new word is read out of the
synchronizer every cycle of the read domain. If the word
that is read out of the synchronizer is valid, it is written
into the corresponding VC buffer (recall that a credit has
been consumed at the sender, before the word is put in the
synchronizer). When the word is invalid, it is ignored. In both
cases, the register that is being read is selected by the read
pointer, which is driven by the receiver’s clock.

In the opposite direction, from where the produced credits
return to the sender, a similar structure is applied. A new credit
update – together with a credit validity bit – are written to
one of the four registers of the credit synchronizer, and, after
two cycles, they are read out on the sender’s side. The valid
credit updates increase the available credits on the sender’s
side, while the invalid ones are ignored.

Instead of using separate pointers for the credit
mesochronous synchronizer, we reuse the free-running
pointers of the synchronizer of the forward direction. Thus,
credit updates are written to the register of the synchronizer
pointed by the read pointer, and they are read out on the
sender’s side via the read multiplexer (using the write
pointer). As long as both counters never stop counting and

they keep a constant difference of 2 (modulo 4), they fulfill
the requirements of proper mesochronous synchronization.

D. Interface Consolidation

In the case of bidirectional interfaces, whereby two NoC
components are connected with a pair of uni-directional links
(allowing both sides to send and receive data), the number of
CDC points are effectively doubled.

en

en

en

en

++

en

en

en

en

++

clock domain Bclock domain A

credit
update

output port

input port

credit
update

output port

input port

credit_AB
data_AB

valid

credit_BA
data_BA

valid

credit_BA
data_BA

valid

credit_AB
data_AB

valid

clk_snd

clk_rcv

mesochronous synchronizer

Fig. 3. Consolidated mesochronous FastCross interfaces that enable a single
CDC point for both data and credits.

For such cases, we propose the consolidation of the synchro-
nization interfaces for maximizing design safety and simplify-
ing verification. Consolidation means that the data and credits
that flow from router A to B (and vice versa) are merged and
synchronized at one entry point at the inputs of B (and A,
respectively) (see Figure 3). The separate synchronizers used
for the data and credits in the case of unidirectional links,
are merged with the synchronizers of the opposite direction.
Each entry of the consolidated synchronizer can carry a new
flit, or a returning credit, or both, simultaneously. With this
approach, FastCross reduces the CDC points in each direction
to merely one, thereby simplifying verification and increasing
the system’s reliability.

The pointers that govern the synchronization are shared
across both sides. This sharing of read and write counters
of mesochronous synchronizers for both directions further
increases also the reliability of data transfer. Mesochronous
synchronizers face metastability only during reset, when the
reset signals must be synchronized using brute-force synchro-
nizers to both domains. This reset signal actually provides
the necessary separation for the read and write pointers,
which allows signals to safely pass from one domain to the
other. Since the need to separately reset multiple independent
pointers is removed when using FastCross, the probability of
experiencing concurrent timing failures during reset at multiple
independent CDC points is minimized.

III. EVALUATION

With FastCross, the overall delay of the forward path to
write data into the VC buffers of the receiver is 3 cycles:
one cycle is spent in writing new data into the mesochronous
synchronizer; the data will then be read out of the synchronizer
after 2 cycles, due to the constant 2-cycle separation of the read
and write pointers. In the same cycle that the data is read out

of the synchronizer, the data is placed in the VC buffers of
the receiver. Equivalently, the delay of credits returning to the
sender is 3 more cycles: once a new credit update is produced,
it needs one cycle to be written into the credit synchronizer.
After 2 cycles, the credit update will be available to the sender,
which can reuse it immediately. Thus, the overall round-trip
delay is equal to 6 cycles.

The number of buffer slots per VC and the corresponding
credits should be able to cover this round-trip delay, in order
to enable 100% throughput. This is achieved by budgeting
6 buffer slots per VC. The total number of buffers can be
significantly reduced by employing VC buffer sharing.

To quantify the buffer savings enabled by FastCross, we
compare it with a tightly coupled organization that assumes
one independent mesochronous FIFO queue per VC [17]. In
such cases, the arrival of the flow control signals is delayed
by two cycles, due to the constant 2-cycle separation of the
write and read pointers inside each mesochronous FIFO. This
delay determines the size of the FIFO buffers to 4 slots (to
enable 100% of throughput).

The third architecture under comparison is LIME [18], a
native VC-based mesochronous link architecture that operates
under credit-based flow control. LIME reduces the synchro-
nization overhead by only using a dual-stage synchronizer for
the flow-control signals, i.e., the forward valid signals and
returned credits. Data moves from the sender directly to the
receiver, without any synchronization element in-between. In
order to avoid timing failures, the FIFO cannot be read directly
after the write operation, but only after the dual-stage synchro-
nizer of the forward flow-control signals permits it, i.e., two
cycles later. In order to achieve 100% throughput operation,
LIME requires 1 less buffer slot per VC, as compared to
FastCross. However, LIME cannot leverage shared buffering,
since it relies on separate FIFOs per VC.

40

30

20

10

0
2 VCs 4 VCs 6 VCs 8 VCs

B
u

ff
e

ri
n

g
 (

#
 o

f
s
lo

ts
)

Mesochronous sync part

FastCross Tightly Coupled LIME

Fig. 4. The buffering required to allow 100% throughput in 3 different
mesochronous VC flow-controlled architectures: (a) the “FastCross”
mesochronous architecture, (b) a valid/stall-based tightly coupled
mesochronous sychronizer (“Tightly Coupled”), and (c) the LIME
architecture.

The minimum buffering requirements for all three architec-
tures under comparison are depicted in Figure 4. Both the
“LIME” and the “Tightly Coupled” architectures make the
most of the available buffering over a 2-VC mesochronous
link. However, when more VCs are employed, FastCross
dominates with up to 55% buffer reduction.

A similar trend is observed in Figure 5, which plots the
hardware-area profile of all three architectures. All three
designs were implemented in SystemVerilog and synthesized
using a 45 nm standard-cell library (at 0.8 V, 125 oC). All con-
figurations use 64-bit-wide data words, and both the sender and
receiver clocks are constrained to 1 GHz in all cases. Note that
“FastCross” uses a slightly wider data synchronizer, in order
to fit the credit for the opposite direction. Shared buffering is
implemented using the ElastiStore architecture [20].

In the 4-VC configuration, “FastCross” ends up occupying
the same area as the “Tightly Coupled” architecture (despite
requiring less buffering, as indicated in Figure 4). This is
the result of the more complex shared buffer. Nevertheless,
under the 6- and 8-VC configurations, FastCross achieves
20% and 34% lower area than the “Tightly Coupled” design,
respectively.

15k

10k

5k

0
2 VCs 4 VCs 6 VCs 8 VCs

A
re

a
 (

u
m

2
)

Mesochronous sync part

FastCross Tightly Coupled LIME

Fig. 5. Hardware area occupied by 3 different mesochronous VC flow-
controlled architectures: (a) the “FastCross” mesochronous architecture, (b)
a valid/stall-based tightly coupled mesochronous sychronizer (“Tightly Cou-
pled”), and (c) the LIME architecture [18].

The concept of tightly coupled mesochronous ap-
proaches [21] – whereby the link synchronization operation is
integrated with input buffering and flow control – is effective
in making efficient use of the hardware resources when the
number of employed VCs is relatively small. This is, indeed,
verified by hardware results in the case of NoCs with 2 VCs,
as seen in Figure 5. The same conclusion can be made for
LIME [18]. Although LIME does not strictly follow the tightly
coupled approach, it still tackles the synchronization overhead
by “tightly” combining input buffering and synchronization
operations. However, this approach becomes inefficient in
multi-VC NoCs. On the other hand, FastCross decouples
synchronization from the VC flow-control semantics. This
decoupling enables the use of shared buffering at the receiver,
which pays off – in terms of hardware cost – as the number of
VCs increases. Thus, the loosely coupled FastCross approach
scales much more efficiently with the number of VCs.

IV. CONCLUSIONS

This article has identified and analyzed the intricacies
involved in the application of VC flow control across
mesochronous clock domains. Contrary to state-of-the-art ap-
proaches that focus on tightly-coupled mesochronous inter-
faces, we have shown that loosely coupled approaches that
distinguish synchronization from VC buffering are more ben-
eficial for mesochronous interfaces. The sharing of VC buffers
and consolidation of the interfaces amortizes the cost of using

separate synchronizers in front of the VC buffers, for increased
number of VCs.

REFERENCES

[1] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey and taxonomy
of gals design styles,” IEEE Design Test of Computers, vol. 24, no. 5,
pp. 418–428, Sept 2007.

[2] W. J. Dally, C. Malachowsky, and S. W. Keckler, “21st century digital
design tools,” in Proc. of DAC, 2013.

[3] G.Campobello and et al., “GALS networks on chip: a new solution for
asynchronous delay-insensitive links,” in DATE, 2006, pp. 160–165.

[4] A. Psarras, M. Paschou, C. Nicopoulos, and G. Dimitrakopoulos, “A
dual-clock multiple-queue shared buffer,” IEEE Trans. on Computers,
vol. 66, no. 10, pp. 1809–1815, 2017.

[5] W. J. Dally and J. W. Poulton, Digital systems engineering. Cambridge
University Press, 2008.

[6] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing
systems,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 8, pp. 857–873, Aug 2004.

[7] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Design
& Test of Computers, vol. 28, no. 5, pp. 23–35, 2011.

[8] P. Bouchard, P. Martin, and J.-J. Lecler, “Network-on-chip (noc) with
qos features,” 2012, uS Patent 2013/0179613A1.

[9] W. J. Dally, “Virtual-Channel Flow Control,” in Int. Symp. on Comp.
Arch. (ISCA), 1990, pp. 60–68.

[10] A. Psarras, J. Lee, I. Seitanidis, C. Nicopoulos, and G. Dimitrakopoulos,
“PhaseNoC: Versatile network traffic isolation through tdm-scheduled
virtual channels,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 35, no. 5, pp. 844–857, 2015.

[11] I. Seitanidis, A. Psarras, E. Kalligeros, C. Nicopoulos, and G. Dimi-
trakopoulos, “ElastiNoC: A self-testable distributed VC-based network-
on-chip architecture,” in IEEE Int. Symp.on Networks-on-Chip (NoCS),
2014, pp. 135–142.

[12] M. Martin, “Token coherence,” Ph.D. dissertation, Univ. of. Wisconsin,
2003.

[13] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann, 2004.

[14] A. Edman and C. Svensson, “Timing closure through a globally syn-
chronous, timing partitioned design methodology,” in Proc. of the Design
Automation Conference (DAC), 2004, pp. 71–74.

[15] M. Ghoneima, Y. Ismail, M. Khellah, and V. De, “Variation-tolerant
and low-power source-synchronous multicycle on-chip interconnect
scheme,” Hindawi VLSI Design, 2007.

[16] D. Verbitsky and et al., “Starsync: An extendable standard-cell
mesochronous synchronizer,” Integration, no. 2, pp. 250–260, 2014.

[17] T.Jain and et al., “Asynchronous bypass channels for multi-synchronous
nocs: A router microarchitecture, topology, and routing algorithm,” IEEE
Trans. on CAD, pp. 1663–1676, 2011.

[18] S. Saponara and et al., “LIME: A low-latency and low-complexity on-
chip mesochronous link with integrated flow control,” in Euromicro
DSD, 2008, pp. 32–35.

[19] D. Konstantinou, A. Psarras, C. Nicopoulos, and G. Dimitrakopoulos,
“The mesochronous dual-clock FIFO buffer,” IEEE Transactions on
VLSI Systems, vol. 28, no. 1, pp. 302–306, 2019.

[20] I. Seitanidis, A. Psarras, K. Chrysanthou, C. Nicopoulos, and G. Dim-
itrakopoulos, “Elastistore: Flexible elastic buffering for virtual-channel-
based networks on chip,” IEEE Transactions on VLSI Systems, vol. 23,
no. 12, pp. 3015–3028, 2015.

[21] D. Ludovici, A. Strano, D. Bertozzi, L. Benini, and G. N. Gaydadjiev,
“Comparing tightly and loosely coupled mesochronous synchronizers in
a noc switch architecture,” in ACM/IEEE International Symposium on
Networks-on-Chip, May 2009, pp. 244–249.

