
A Unified UVM Methodology For MPSoC
Hardware/Software Functional Verification

Sherif Hosny

ST Microelectronics

{sherif.hosny@st.com}

Abstract—Over the past few years the complexity of Multi-
Processor System on Chip (MPSoC) designs increased drastically.
This made product verification very challenging and illusive.
In order to cope with design complexity, Universal Verification
Methodology (UVM) associated with System Verilog Assertions
(SVA) are used extensively to build up robust verification en-
vironments revealing design issues. This work introduces a new
methodology verifying SoC design blocks in two modes: Stubbing
mode, where all blocks serving the Design Under Test (DUT)
are implemented as UVM active and passive agents; Physical
hardware mode, where all blocks are physically running along
with the firmware driver. A complete SoC system contains:
processor, controller, and encryption engine is studied while
implementing the proposed verification approach. Functionality
check and coverage collection are performed through UVM
scoreboard and subscriber respectively. The proposed approach
provides the capability of verifying both hardware and firmware
simultaneously in the simulation phase.

Keywords—MPSoC (Multi-Processor System on Chip), UVM
(Universal Verification Methodology), DUT (Design Under Test),
and Firmware

I. INTRODUCTION

As we live in era of technology, the size of SoC (System on
Chip) designs has increased rapidly over the past few years
leading to higher design complexity. According to Moore’s
law, the number of transistors per silicon chip gets doubled
every year. However, as Moore’s law is getting saturated, new
architectures are introduced to build up more sophisticated
SoC devices which made the chip functional operation much
more complicated [1]. This lead to increase the burden of
verification engineer, where simple old approaches became
inefficient anymore [2]. The UVM (Universal Verification
Methodology) initiated by Accellera [3] is a highly abstracted
standardized verification methodology. The framework pro-
vides a group of organized SV (System Verilog) classes aiming
to enable full control on the DUT (Design Under Test).

Since current conventional SoCs contain blocks communi-
cating with the embedded target processor, it became much
more elusive to verify both hardware design and firmware
driver on the embedded target as early as possible. This work
introduces a unified automated flow where both hardware and
firmware are verified together in the UVM testbench. This is
achieved by introducing a new type of UVM agents entitled
semi-active agents.

This paper is organized as follows: Section II shows a list
of related work. Section III gives details about the embedded

target flow. Section IV illustrates the proposed verification
flow. A case study deploying the proposed approach is shown
in Section V. Finally, Section VI shows the paper conclusion
and future work.

II. BACKGROUND AND RELATED WORK

The authors in [4] proposed a reusable UVM environment
aiming to verify different types of SoC buses. The paper lacks
details about the deployed verification methodology in order
to include the blocks interacting with the verified buses on
the SoC level. Another reusable mechanism is proposed in
[5] targeting different types of flash memory controllers. The
main target is to find the common features between different
controllers to generate common scenarios. Despite comparing
between different controllers, the verification approach is
performed on the block level not the chip level.

Similarly, Hybrid Memory Cube (HMC) memory controller
is verified in [6]. In [7], a proposed block level reusable
testbench based on UVM is deployed for the sake of verifying
synchronous FIFO. The authors in [8] proposed another block
level environment aiming to verify the DVB (Digital Video
Broadcast) module. The verification approach in the afore-
mentioned work is based on applying UVM agents without
including the firmware driver in their verification flow.

Jiayi et al. proposed a new environment in [9] targeting the
verification of RISC-V integrated in full SoC environment.
The case study for the deployed verification environment is
the DMA, where the authors illustrated the UVM environ-
ment built to verify it. In the active state, the sequence is
derived from the sequencer, meanwhile in the passive state,
the sequence is derived by the RISC-V core. The paper does
not provide any details about the checking mechanism in the
case of the passive state. The limitations in this approach are
twofold: First, the firmware code running on the RISC-V core
includes either directed test vector or simple randomized data,
so it lacks automation. Second, if passive agents are used,
the scoreboard will have no details about the reference data
executed by the firmware code on the RISC-V core. If the
sampled data from the monitor placed at the RISC-V core
is considered as the reference, this data might be erroneous
as there are multiple operations performed between the core
and the boot memory. The proposed verification flow aims to
solve the aforementioned problems in an automated way by
introducing a new type of UVM agents entitled semi-active
agents.

III. EMBEDDED TARGET FLOW

The conventional SoC system as illustrated in Figure 1
consists of the following building blocks:

• Processor: For executing firmware driver code and con-
trolling all other blocks.

• Boot ROM (Read Only Memory): Non volatile on-chip
memory used to store bootable image.

• RAMs (Random Access Memories): Two volatile on-
chip RAMs are used to serve the processor; the I-RAM
(Instruction-RAM) and D-RAM (Data-RAM).

The processor interacts with all memories using high speed
interfaces such as: AMBA-AXI (ARM Advanced Microcon-
troller Bus Architecture Advanced eXtensible Interface) [10],
AMBA-AHB (AMBA Advanced High-performance Bus) [11],
and STBus [12]. If the SoC system contains multiple masters
communicating with multiple slaves, a bus matrix shall be used
for the arbitration mechanism.

Fig. 1: SoC level system

On power up, the processor fetches the configurable startup
address or the static address mapped to the boot ROM. The
loaded boot image guides the processor to the next step to
either fetch an external flash memory to extract the firmware
driver image and pass it the I-RAM to be executed, or fetch
the previously loaded code on I-RAM directly. The processor
then starts to execute the I-RAM code while using the D-RAM,
then interacts with other slaves in the SoC.

IV. PROPOSED VERIFICATION APPROACH

Verifying a specific block in the SoC system mentioned
earlier is performed on two phases. The RTL verification
phase, which involves verifying the RTL design without the
deployment of firmware driver. The flow involves two levels
of verification:

• Block Level Verification: Which involves verifying the
RTL block solely without including any other SoC level
blocks. The main target at this level is to verify the block
functionality in all possible cases by driving the input
directly to the block without concentrating on verifying
the timing diagram requirements between various blocks.

• SoC Level Verification: Based on prior knowledge of
the created block level test-cases, this flow stubs all
the blocks interacting with the intended DUT. The main
target of the scenarios created at this level is to verify the
correct DUT behavior while driving the input based on
the intended timing diagram from other blocks.

The second phase is the firmware driver verification. After
performing the steps mentioned earlier, the firmware driver
code is verified using the following two approaches:

• FPGA Verification Flow: The firmware driver is com-
piled and the generated ELF (Executable Loading For-
mat) is converted to hex format to be loaded on the
processor embedded in the FPGA board. Verification is
performed using the SWD (Serial Wire Debug) port [13]
where register values are read and functionality of the
code is verified correctly. The drawbacks of this approach
are threefold: First, the long FPGA bit file generation
cycle leading to large turn around time if an issue is
detected in the RTL. Second, debugging the issues on
FPGA level needs probe insertion on specific signals in
the design which not only increases the bit file generation
time, but also allocates extra chip area for the probe
memory. Third, verifying using the SWD is very basic
process and is done manually.

• Simulation Based Verification Flow: The firmware
driver hex file is also loaded on the processor in the
simulation flow. The DUT input is derived from the
firmware driver side and passed to the reference model
to generate the intended output, then propagated to the
SV-side through file I/O. This flow does not suffer from
the issues in the FPGA flow, however it has from the
following limitations: First, randomization in C-side is
very elementary and lacks complex constraints present
in SV. Second, the approach also lacks the ability to
apply the same sequences developed in the SoC level
verification to obtain high coverage results.

The proposed approach defines a complete UVM environ-
ment capable of combining the RTL block level and SoC level
with the ability for verifying the firmware driver code using
the same random sequences in an easy automated way. The
proposed UVM environment operates in two modes: Stubbing
mode, where the UVM agent operates first in active/re-active
state to mimic the behavior of the processor while interacting
with the DUT as illustrated in Figure 2. The sequencer gen-
erates the random transaction, then passes it to both reference
model DPI (Direct Programming Interface) [14] functions and
UVM driver which in terms forwards it to the DUT. Then,
the monitor samples transactions performed by the driver and
passes it to the scoreboard.

Fig. 2: Agent active state

In order to verify the functionality of the firmware driver,
a new state for the UVM agent is proposed entitled semi-
active/semi-reactive state where the processor is involved with-

out stubbing as mentioned in Figure 3. The sequencer starts
by randomizing the transaction and passing the input to the
reference model through the DPI functions. To overcome the
drawbacks in the techniques mentioned earlier, the sequencer
generates C-header file on the fly containing the randomized
data from the SV side, then it compiles the generated header
file with the firmware driver file list to generate the embedded
target hex file with the aid of $system system task to call GCC
compiler. The hex file is stored in an array using $readmemh
system task, then it is loaded in either the ROM or RAM using
backdoor access to their full hierarchical path. This is achieved
by passing the array content and the hierarchical name to a DPI
function that calls VPI (Verification Programming Interface)
subroutines [14].

The driver in this agent state is only used for resetting
the processor through the watchdog timer. The processor
afterwards starts loading either the ROM or RAM code and
executes the firmware code instructions without any interfer-
ence from the UVM driver. The monitor shall sample all
transactions performed by the processor including both op-
code and data transactions then passes them to the scoreboard.
Since the UVM driver has no control on the input derived to
the DUT, the reference data is derived from the sequencer not
the driver.

Fig. 3: Agent semi-active state

V. CASE STUDY

In order to realize the proposed verification criteria, a
complete SoC is studied. As illustrated in figure 4, the system
consists of two masters and single slave. The first master is a
processor, meanwhile the other master is a generic controller.
Both masters are communicating with the encryption engine
slave through high speed AMBA AHB bus [11].

Fig. 4: Studied SoC design

The encryption engine is not only capable of applying
confidentiality for encryption/decryption mechanism, but also

supports integrity mode for verifying authenticated users.
The supported symmetric encryption/decryption algorithms
are: AES (Advanced Encryption Standard) [15] and DES
(Data Encryption Standard) [16]. As illustrated in Figure 5,
the engine consists of RIF (Register Interface) for processor
configuration, input and output memories for interaction with
the controller.

Fig. 5: Encryption engine block

Interaction between the encryption engine and the controller
is performed using the following side band channel signals:

• Write Request: Encryption engine is asking the con-
troller to start writing plain text data.

• Write Acknowledgment: Controller is informing the
encryption engine that write request is accepted.

• Write Grant: Controller is acknowledging the end of
write phase.

• Read Request: Encryption engine is asking the controller
to start reading cipher text data.

• Read Acknowledgment: Controller is informing the
encryption engine that read request is accepted.

• Read Grant: Controller is acknowledging the end of read
phase.

The communication scheme between both masters and the
encryption engine is performed as illustrated in Figure 6. The
processor starts to configure the engine parameters through
its RIF including the encryption scheme, the plain text size,
mode of operation either confidentiality or integrity, and
encryption/decryption algorithm. The processor then asserts
the engine start signal to initiate the confidentiality/integrity
operation. The engine in terms signals the controller with
side band write request signal. The controller then responds
with write acknowledgment whenever it becomes ready for
plain text data transmission to the engine. After finishing data
transmission, the controller asserts the write grant.

In case of confidentiality mode, the engine starts generating
the cipher text data in the output memory, then signals the
controller with read request. The controller responds with
read acknowledgment when being ready and starts to read the
cipher data, then eventually asserts the read grant. Meanwhile,
in case of integrity mode, the engine generates the digital
signature in the RIF, then the processor reads the generated
signature. Eventually, the engine asserts the done register
and asserts interrupt on the processor NVIC (Nested Vector
Interrupt Control) ports.

Verifying the slave engine mentioned earlier is performed
using two interfaces: AHB interface for any AHB transaction
and crypto interface for side band channel signals. Commu-
nication between UVM classes and the concrete interfaces
connected to the DUT is performed using virtual interface

Fig. 6: Encryption engine waveform

instances as illustrated in Figure 7. The UVM config db
database class is used to propagate the initialized virtual inter-
face instances from the top level module to the corresponding
driver and monitor.

The UVM environment is built using three UVM agents:
• Processor Agent: The agent is responsible for RIF con-

figuration and capturing the digital signature. It has two
states: reactive and semi-reactive. In the reactive state, the
sequencer forwards the random data to the driver and the
DPI reference model function. Side band channel signals
sampled from the monitor are passed to the sequencer
to control the sequence. This is performed through either
separate broadcast or unidirectional UVM TLM channel
established between both UVM components. The signal
value is retrieved at the sequencer side using the get
method provided by the UVM TLM FIFO. The differ-
ences in case of semi-reactive state are: The hex file
generation is performed by the processor and the limited
usage for the UVM driver for remapping if needed and
resetting the processor. Since the monitor in the semi-
reactive state shall sample all the transactions performed
by the physical processor, an address decoder is used
to exclude the op-code transactions and focus on the
encryption engine transactions.

• Controller Agent: The agent is responsible for passing
the plain text data to the engine and read the cipher data
in case of confidentiality mode. Similar to the processor
agent, both states are enabled. However, the side band
channel signals are different.

• Crypto Agent: The main purpose of using this agent
is to verify the functionality of the bus matrix. It has
only passive state to forward the sampled data to the
scoreboard. Since this agent has the visibility on all
transactions passed from the two masters and the slave,
it is used to broadcast the transactions to the subscriber.

The scoreboard consists of four queues buffering all ref-
erence and actual transactions from corresponding agents.
Checking mechanism is performed at the following spots:

• Processor Side: Where reference data is generated by
the processor sequencer and actual data is sampled by
the processor monitor.

• Controller Side: Where reference data is generated by
the controller sequencer and actual data is sampled by
the controller monitor.

• Crypto Side: Where reference data is generated by either
the processor sequencer or the controller sequencer and
actual data is sampled by crypto monitor.

• SW Driver Side: Where the reference data is dumped
in the C-header file to be compiled along with other

firmware driver files to generate the hex file. In such
case the firmware is able to assert on the resultant data
compared with the reference data dumped earlier from
the sequencer.

Random test pattern generation and test scenarios deploy-
ment are performed using a virtual sequence controlling
children sequences running on the corresponding children
sequencers. The UVM base test class can be configured to
run three families of virtual sequences: Stubbing the processor
and the controller, where both processor and controller agents
are in re-active state; Stubbing the controller only, where the
processor agent is in semi-reactive state and the controller
agent is in re-active state; No stubs, where both processor
and controller agents are in semi-reactive state.

Switching between various virtual sequence families is
performed on the command line using $plusargs system
function propagating the sequence type as a string to the base
test class. Since the children sequences must be configured
based on the sequence type, the string variable is propagated
from the base test class to the children sequences using the
resource db database class.

Timing diagram verification is performed through System
Verilog Assertions (SVAs), where concurrent assertions are
written in a separate module instantiated under the top level
testbench module.

VI. CONCLUSION AND FUTURE WORK

The proposed verification methodology provides the privi-
lege to verify both hardware design and firmware driver within
the same automated UVM environment in the simulation
phase. This leads to reduce both the verification life cycle and
the burden on firmware test engineer. Deploying the proposed
approach on the full chip design to verify E2E (End To End)
scenarios shall be added in the future for system completeness.

VII. ACKNOWLEDGEMENT

This work is funded by ST Microelectronics. The author
would like to thank Mostafa Khamis and Omar Ibrahim for
their comments that greatly improved the manuscript.

REFERENCES

[1] H. Foster, “2018 FPGA Functional Verification Trends,” in 19th Inter-
national Workshop on Microprocessor and SOC Test and Verification
(MTV), Austin, TX, USA, Dec. 2018.

[2] S. Hosny and A. Baher, “Design Crawler: A Web Application for
Digital Design Metadata Analysis,” 20th International Workshop on
Microprocessor/SoC Test, Security and Verification (MTV), Austin, TX,
USA, Dec. 2019.

[3] Accellera Systems Initiative, “Universal Verification Methodology
(UVM) 1.2 User Guide,” Oct. 2015.

[4] A. Hussien et al., “Development of a Generic and a Reconfigurable UVM-
Based Verification Environment for SoC Buses,” in 31st International
Conference on Microelectronics (ICM), pp. 195-198, Cairo, Egypt, Dec.
2019.

[5] K. Salah, “A Unified UVM Architecture for Flash-Based Memory,”
in 18th International Workshop on Microprocessor and SOC Test and
Verification (MTV), pp. 1-4, Austin, TX, Dec. 2017.

[6] N. K. Doshi, S. Suryawanshi, and G. N. Kumar, ”Development of
generic verification environment based on UVM with case study on
HMC controller,” in IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT), pp.
550-553, Bangalore, India, May 2016.

Fig. 7: Encryption engine verification environment

[7] T. M. Pavithran and R. Bhakthavatchalu, “UVM based testbench archi-
tecture for logic sub-system verification,” in International Conference on
Technological Advancements in Power and Energy (TAP Energy), pp.
1-5, Kollam, India, Dec. 2017.

[8] M. F. U. Rahman and D. Naveen, “Verification of a Digital Video
Broadcasting – Satellite to Handheld (DVB-SH) IP Using UVM,” in
Second International Conference on Computational Intelligence & Com-
munication Technology (CICT), pp. 462-467, Ghaziabad, India, Feb.
2016.

[9] J. Wang, N. Tan, Y. Zhou, T. Li and J. Xia, “A UVM Verification Platform
for RISC-V SoC from Module to System Level,” in IEEE 5th International
Conference on Integrated Circuits and Microsystems (ICICM), pp. 242-
246, Nanjing, China, Oct. 2020.

[10] ARM Corporation, “AMBA AXI™ and ACE™ Protocol Specification,”
Sep. 2003.

[11] ARM Corporation, “AMBA™ Specification,” Rev 2.0, June 1999.
[12] STMicroelectronics Corporation, Texas Instruments, “STBus communi-

cation system concepts and definitions UM0484 User manual,” Oct. 2012.
[13] ARM Corporation “ARM Debug Interface Architecture Specification,”

V5.0, Aug. 2006.
[14] IEEE Computer Society and the IEEE Standards Association Corporate

Advisory Group, “IEEE Standard for SystemVerilog Unified Hardware
Design, Specification, and Verification Language 1800™-2012,” Feb
2013.

[15] F. J. D’souza and D. Panchal, “Advanced encryption standard (AES)
security enhancement using hybrid approach,” in International Conference
on Computing, Communication and Automation (ICCCA), pp. 647-652,
Noida, India, May 2017.

[16] Seung-Jo Han, Heang-Soo Oh and Jongan Park, “The improved data
encryption standard (DES) algorithm,” Proceedings of ISSSTA’95 Inter-
national Symposium on Spread Spectrum Techniques and Applications,
pp. 1310-1314, vol.3, Mainz, Germany, Aug. 2002.

