
 

An Efficient Analog Convolutional Neural Network 

Hardware Accelerator Enabled by a Novel 

Memoryless Architecture for Insect-Sized Robots

 Iman Dadras  

Intelligent Materials and Systems 

Laboratory (IMS Laboratory) 

Institute of Technology 

University of Tartu 

Tartu, Eatonia 

iman.dadras@ut.ee 

Jaan Raik  

Centre for Dependable Computing 

Systems 

Department of Computer Systems 

Tallinn University of Technology 

Tallinn, Eatonia 

jaan.raik@ttu.ee 

Mohammad Hasan Ahmadilivani  

Centre for Dependable Computing 

Systems 

Department of Computer Systems 

Tallinn University of Technology 

Tallinn, Eatonia 

mohammad.ahmadilivani@taltech.ee

Saoni Banerji  

Intelligent Materials and Systems 

Laboratory (IMS Laboratory) 

Institute of Technology 

University of Tartu 

Tartu, Eatonia 

saoni.banerji@ut.ee  

Alvo Abloo  

Intelligent Materials and Systems 

Laboratory (IMS Laboratory) 

Institute of Technology 

University of Tartu 

Tartu, Eatonia 
alvo.aabloo@ut.ee 

     Abstract—For decades, miniaturization of robots has gained 

considerable attention due to the exciting applications of insect-

sized robots, such as ambient monitoring. However, scaling down 

the robots' dimensions reduces energy availability drastically for 

sensors and controllers. It has prohibited many successful 

technologies tested in larger-scale robots from application in 

insect-sized ones. As a result, insect-sized robots' power and 

sensor/control autonomy is an open field of research. One of these 

technologies is Convolutional Neural Networks (CNN). This paper 

presents novelty in different levels of abstraction from 

architectural to transistor-level that drastically reduces the CNN 

power to comply with the low power budget of insect-sized robots. 

Analog computation is utilized for its compactness, and an 

architecture is devised to simplify the analog circuitry. Proposed 

convolutional filters, showing four orders of magnitude higher 

efficiency with respect to the state-of-the-art, consume merely 1.5 

nW/image with 92% accuracy and promise application of CNN-

based controllers in insect-sized robots. 
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I.  INTRODUCTION 

Visual perception constitutes 90% of human brain input 
[1], and machine vision is proven to be a disruptive technology 
in robotics [2]. Convolutional Neural Networks (CNN) are 
used as a solution to perform machine vision tasks adapted 
from Artificial Intelligence (AI) domain for image 
classification problems [3], [4]. It is utilized in robots' 
locomotion control for applications such as obstacle 
avoidance [5], target detection [6], foothold selection [7], and 
trajectory planning [8]. However, CNN-based onboard 
locomotion control has only been deployed for relatively 

large-scale robots [9] owing to the high-power and area 
requirements of CNN processors and the low payload capacity 
of insect-sized robots [10], [11]. This poses a pressing need to 
reshape CNN processors for insect-sized robots in terms of 
size, weight, and power (SWaP) cost. 

Recent work [9] has demonstrated the utility of CNN for 
visual control at insect-scale. A custom-built low-weight 
vision sensor is mounted on a flapping wing insect-sized 
robot. The images are classified using CNN implementation 
off-board to make the robot recognize and repeatably move 
toward flower images and away from predator images.  
However, owing to the computationally expensive [12] CNN 
algorithms and the payload and power constraints of the robot, 
the system is unable to accommodate onboard computation, 
restricting its field of operation.  

Small payload capacity in the order of few hundreds of 
milligrams in insect-sized drones [10] and tens of milligrams 
in ionic electroactive polymer (IEAP)-based robots [11] is 
prohibitive for power and control autonomy. An insect-sized 
robot with extended payload capacity [10] is shown to have 
enough payload for either power or sensor autonomy, not 
both.  

By shrinking the processor and reducing the power, 
Application-Specific Integrated Circuit (ASIC) hardware 
accelerators can improve both control and power autonomy in 
compliance with small robots' low power budget (100 μW to 
100 mW for the whole system [13]). An autonomous 10-cm 
glider (MicroGlider) is demonstrated in [14].  MicroGlider has 
an audio-based guidance system assisted by an optic flow 
ASIC processor. BrainSoC [15] is a central controller 
designed for controlling insect-scale flapping-wing robots. It 
uses hardware accelerators for edge sharpening and optical 
flow. In [13], a Binary Neural Network (BNN) hardware 
accelerator is reported to have potential application in insect-
sized drones.  

To the authors' knowledge, no CNN hardware accelerator 
has been reported for onboard control of insect-sized robots. 
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References [16]–[18] report low power integrations of 
CNN/BNN first layers with CMOS Image Sensors (CIS) for 
always-on devices. Although a camera and a CNN's first layer 
on the same chip reduces the energy-hungry inter-chip data 
transfer, a higher level of integration is required to comply 
with the restricted requirements of insect-scale robots. 
Reference [19] shows a CIS integrated with a full analog 
convolutional processor for an always-on image sensor. 
However, although this reference exploits analog computation 
compactness, the use of capacitors as memory components 
deteriorates its performance and hinders repurposing it for 
insect-sized robots.  

Analog computation represents each pixel with a single 
signal (voltage or current) and performs multiply-accumulate 
(MAC) operations with approximately one transistor per input 
bit. This feature empowers analog computation compared to 
its digital counterpart, which needs several gates for each 
operation. Despite this advantage, interlayer memories in 
existing CNN architectures impede wide-spread utilization of 
analog processors. In a feed-forward CNN, the input of each 
layer is the output of the previous layer. Thus, the output 
features of a layer should await the completion of the rest of 
the features' map in a memory. This leads to massive memory 
walls between layers. Analog designers can realize these 
architectures either by several power-hungry conversions 
between analog and digital domains to store features in digital 
interlayer memories or by implementing slow and error-prone 
analog memories [19], [20], of which neither is appropriate. 
Pipeline architecture [21] has been proposed to minimize the 
memory walls. However, if the output is analog, it still needs 
to be either converted into digital domain to be stored in the 
memory, or designers are required to tackle the hassles of 
analog memory [22].  

As the problem arises at the architecture level, a solution 
should be sought by an interlevel design in which algorithm 
and architecture are selected or designed for analog 
computation. In this work, with a hybrid bottom-up and top-
down design approach, a new architecture is tailored for an 
optimal analog computational performance (bottom-up) in 
which memory is omitted completely. Then, an algorithm is 
selected to keep the architecture reasonably sized (bottom-up) 
by avoiding overlaps between receptive fields of output map 
features while achieving the application requirements (top-
down).  

The proposed architecture is completely memoryless, i.e., 
no storing components such as capacitors are used as they 
slow down the system by introducing time constants to the 
circuit as well as increasing processing time and energy 
consumption per image. Therefore, designs such as [19] that 
do not have a memory block but use capacitors to store data 
after each clock cycle are not considered to be memoryless. 

The convolutional processor in this paper, based on the 
new memoryless architecture and novel low-power analog 
circuitries (<1.5 nW/image), fits the low power requirement 
and complies with the restricted power budget of insect-sized 
robots. Our contributions towards the first autonomous insect-
sized robot that will have a single-chip control unit including 
a full CNN inference engine, controller, and CIS is as follows:  

•  We proposed a new architecture termed Funnel that 
omits the need for intermediate memories and ADC/DACs 
and lessens the requirements on output ADC significantly. 

•   Novel circuitries are proposed to realize the Funnel 
architecture, among them a dual-purpose input 
DAC/convolution circuitry which performs both operations 
with about one transistor per input bit. 

•   It is shown that the proposed analog convolutional 
processor is in four orders of magnitude more efficient than 
[19], achieving 46 TOPSPW without sacrificing accuracy. 

The rest of the paper is organized as follows: Section II 
presents the novel convolutional processor architecture. Then, 
circuit topology for each layer is proposed in Section III. 
Section IV explains the experimental setup. The interpretation 
of the results is discussed in Section V, followed by 
concluding remarks in Section VI. 

II.  PROPOSED FUNNEL ARCHITECTURE 

With contemporary computer architecture, interlayer 
memory walls are responsible for the significant area and 
power dissipation in CNN accelerators [23]. Pipeline 
architecture was devised to shrink the memory walls between 
the intermediate layers [21]. However, it fails to ease the 
ADC/DAC requirements. For an ADC/DAC-free accelerator, 
the circuit should completely lose the intermediate memories. 

 

Fig. 2  Proposed Funnel architecture. Bottom: input layer. Center: 

intermediate layer. Top: output layer. 
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Fig. 1  Pipeline architecture (a) enough pixels in the buffer for one 

kernel operation (red box). (b) kernel operation is done, pixel number 0 

is released from memory to free space for pixel number 8. (c) the 

process has progressed for six clocks. (Taken from [21]) 



In the pipeline architecture, the features are stored in a 
buffer where they are awaiting the rest of the array. When 
there are sufficient features for a kernel operation in the next 
layer, the accelerator conducts the operation. Then, the 
accelerator discards any used features that are not involved in 
forthcoming operations to free up space for new features from 
the previous layer (Fig. 1). 

The architecture proposed in this paper is based on two 
additional aspects to pipeline architecture. First, kernel 
operations are spatial. It means that the order of pixels in input 
register matters. For example, in Fig. 1, if the order of 
incoming pixels changes to 0, 1, 6, and 7, the number of 
required buffer registers is reduced to 4. Moreover, when only 
4 pixels need to be accessed simultaneously, they could be 
obtained concurrently with parallel computation instead of 
using memory. 

Therefore, the first layer throughput is selected equal to the 
receptive field of the first feature in the convolutional 
processor output. Then, the accelerator conducts parallel 
computations and provides the intermediate layers with the 
required input to produce one feature at the final output. The 
throughput then moves to the receptive field of the second 
output feature and so forth.  

Fig. 2 shows funnel architecture for a small convolutional 
network with one intermediate layer and stride and kernel size 
2 × 2 . As only one output is produced at each clock, the 
requirements on the output ADC are also reduced. 

A. LWCNN Algorithm 

This paper adapts the LightWeight Convolutional Neural 
Network (LWCNN) algorithm [19] according to the applied 
image resolution due to the reasons stated below: 

• The funnel architecture has the best efficiency for 
algorithms in which the stride and kernel size is equal in each 
layer. In this condition, the receptive fields of output features 
share no pixel. If receptive fields share pixels, a bigger 
throughput is needed to prevent redundant calculations.  

• The algorithm consists of only four layers and conforms to 
the SwaP cost for insect-sized robotics. The algorithm has 
been tested successfully [19]. 

The modified LWCNN algorithm is illustrated in Fig. 3. The 
convolutional processor consists of two convolutional and two 
pooling layers. The kernel in each layer is 2×2 with a stride of 
2. The last pooling output is 256 features which are processed 
in the fully-connected layer for binary classification. 

III.  CNN ACCELERATOR DESIGN 

Two different convolution circuits, two versions of a 
maximum pooling circuit, and a fully-connected unit are used 
to realize the LWCNN algorithm with the funnel architecture. 
The input circuitry performs both digital to analog conversion 
and convolution. The second layer is a modified voltage-mode 

MAX circuit. Layer three conducts convolution with a 
differential pair-like circuit. And the last layer is again a 
voltage-based MAX. 

The Funnel architecture requires simultaneous readiness 
of input for each layer. Shift registers transfer input pixels to 
the convolution layer. Then, 64 convolution blocks in the first 
layer (CONV1) provide inputs for 16 first pooling layer blocks 
(POOL1). The output of 16 POOL1 blocks goes to 4 CONV2 
blocks that feed the last layer, POOL2, which produces one 
output that is converted to digital and handed to the digital 
fully-connected layer. The top-level topology is depicted in 
Fig. 4. 

A. Dual-Purpose DAC/Convolution Input Circuitry 

As mentioned, the power consumption of ADC/DAC 
blocks is the primary bottleneck in realization of CNN analog 
accelerators. Whereas the new funnel architecture omits the 
intermediate ADC/DAC and reduces the output ADC 
requirement to one pixel per clock, the proposed input layer 
precludes the input DAC as the conversion is carried out 
concurrently with the convolution. 

The input layer circuitry is designed considering that DAC 
and convolution functionally resemble each other. For DAC, 
each bit is multiplied by its weight; then, all the products are 
summed up together according to (1). 

� = � �	
�	

�
�

	��
 (1) 

In (1), �	  is the bit value, 
�	  is the bit weight, � is the 
number of bits used to represent each pixel, and � is the pixel 
value.  

Similarly, convolution result is the summation of all pixel-
weights' products as shown in (2): 
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Fig. 3  LWCNN algorithm adapted from [19] 
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Fig. 4  Top level topology of analog convolutional network 
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where � is the convolution output, 
� is the pixel weight, 

and � is the number of pixels in a kernel. 

By factorization, it is possible to multiply each bit with the 
product of bit and pixel weights and then add all the results 
together, directly obtaining convolution output: 

� =� �	
�	
��
����
��

	��
 (3) 


� is 
� ×
�. 

The first convolution block is implemented by the use of 
current sources controlled by bit values. For each bit, a current 
source transistor, e.g., a simple common-source NFET, is 
placed. The aspect ratios of current sources are set 
proportional to 
�  of the corresponding bit. The current 
sources for bits with negative and positive pixel weights are 

normally-on (gates are connected to the Q� output of the last 
flip-flop of input image shift register) and off (connected to Q 
output), respectively. Drain currents of all transistors go to the 
load transistor generating a proportional voltage. Hence, when 
all bits are zero, there is a neutral voltage (corresponding to 
zero) at the output. As any bit turns one, its current source 
turns on for bits in pixels with positive weight and off for bits 
in pixels with negative weights So, the output voltage changes 
proportional to 
� . Fig. 5 shows the transistor-level 
implementation of the convolution block with a kernel size of 
four 4-bit input pixels. The first and second digits in the Q 
subscript indicate the pixel number the bit number, 
respectively. This figure also illustrates the convolution block 

output. With four 4-bit bytes with weights of [-2, -1, 1, 2] the 
output can have 92 values. The results are almost linear. It is 
worth mentioning that in case of a Relu activation function, 
the negative values are disregarded, leading to an even more 
linear output. According to the architecture and the algorithm, 
64 instances of this block are needed in the input layer. Thus, 
this part highly influences the power and area of the circuit. 

B. Pooling Circuitry 

Pooling (POOL1 and POOL2) blocks are modified 
versions of the widely used voltage-mode MAX pooling 
circuit [19] (see Fig. 6). However, as in this paper, the first 
pooling output should be assigned directly to a differential 
pair-like circuit; it is essential to have an adequate DC 
component for biasing the next stage and have small swinging 
to maintain the following circuit in the saturation region. Also, 
the impedance at the output node should match the one at the 
corresponding node of the input branches. Therefore, three 
transistors are placed at the output to add more degrees of 
freedom in the first pooling layer to meet these requirements 
(Fig. 6). The second pooling layer is a standard voltage-mode 
MAX circuit [24] and has only one NMOS in the output 
branch. The waveforms of the output pooling block are 
depicted in Fig. 6. The output follows the maximum input 
voltage performing pooling operation.  

C. Second Convolution 

A differential pair configuration with two parallel 
transistors on each side forms the CONV2 blocks. The 
schematic diagram is shown in Fig. 7. NFET aspect ratios and 
subsequently transconductances are set proportional to the 
weights. NMOS transistors corresponding to positive and 
negative weights are shown on the right and left-hand sides, 
in Fig. 7, respectively. Therefore, they add or subtract a 
proportionate current on the PMOS load transistor. 
Inputs/output waveforms are illustrated in Fig. 7. Output slope 
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Fig. 5  Transistor-level schematic of the input layer circuitry and its 

output voltages for all possible convolution values 
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Fig. 6  The modified voltage-mode MAX circuit and standard 

voltage-mode MAX circuit input and output waveforms  



in each instance is equal to the weighted sum of the slope of 
inputs. 

D. Fully-Connected 

The digital fully-connected layer is placed after the 
convolutional processor. This layer conducts weighted-sum 
operations on the analog part output to categorize images into 
two classes.  

At each clock cycle, the convolutional processor via an 
ADC provides the fully connected layer with one feature. The 
feature is multiplied by its corresponding weights and added 
to the values of two registers attributed to each class. At the 
last clock of each image, the fully connected layer determines 
the image's class according to the registers' values and resets 
the registers. Further details of the implementation of fully-
connected layer are beyond the scope of this work. 

IV.  EXPERIMENTAL SETUP 

The transistor-level implementation of the proposed 
circuit is simulated in TSMC 40nm technology using Cadence 
Design Suite together with the Spectre Simulator. Shift 
registers for input images and fully-connected layer are 
implemented in VHDL and included in the design to evaluate 

the final performance and accuracy of the LWCNN with 
proposed analog convolutional circuitry for face detection.  

The training is carried out by a dedicated script written in 
Python. A dataset of 2700 gray-scale images (resolution 
256 × 256) consisting of 1000 images of human faces 
(randomly taken from LFW dataset [25]) and 1700 images of 
cats and dogs (randomly selected from [26] is used. For power 
and memory considerations, all images, in both training and 
inference phases, weights, and the ADC are 4-bit.   

The obtained weights are embedded into the VHDL of the 
fully-connected layer. The inference is conducted in Cadence 
Design Suite. Four hundred fifty images (150 humans, 300 
animals from the aforementioned datasets) are analyzed to 
attain the system's accuracy. 

V.  RESULTS 

The results of the convolutional network are assessed in 
two ways. First, the output of the proposed circuit for an image 
is compared with its ground truth obtained with a Python 
script. The comparison result shows good conformity: the 
simulated results and ground truth are visualized side by side 
in Fig. 8. It also shows the error distribution. The error for 188 
pixels out of 256 is less than 5%. Mean square error (MSE) of 
the normalized values is calculated 0.007. The error does not 
affect the final accuracy of the system. 

Then, according to the previous section, the convolutional 
network is simulated along with shift registers at the input and 
an ADC and fully-connected layer at the output to evaluate 
and compare the CNN system performance with cutting-edge 
accelerators. Table I compares the proposed accelerator with 
state-of-the-art CNN processors [16]–[19] and [27]. This table 
provides a thorough comparison of different works regarding 
their characteristics of the design (technology, implemented 
circuit, and supply voltage) as well as their applications. It also 
reports the accuracy of the neural networks with their image 

VDD

(m) (n) (m)(n)

POOL11 POOL12

VOUT
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Fig. 7  Second convolution layer Schematic diagram and waveform 

 

TABLE I   PERFORMANCE COMPARISON 

 [16] [17] [18] [27] [19] This work 

Technology 
Samsung 65 

nm 
180 nm 180 nm 45 nm Dongbu 110 nm TSMC 40 nm 

Application 
Face 

recognition 
Classification Classification 

Feature 

extraction 
Face detection Face detection 

Implemented analog 

circuitry 

1st layer of 

CNN 
1st layer of CNN 1st layer of BNN 

Kernel filter and 

ReLu function 

2 layers of 

CONV and 
POOL 

2 layers of 

CONV and 
POOL 

Supply (v) 1.2 0.5 1.8 1 3.3 0.9 

Network Accuracy 96.18% 92.2% 98.3% - 89.33% 92.2% 

Resolution 320×240 128×128 32×32 120×120 160×120 256×256 

Power Consumption 
10.17-18.75 

�
 
117 �
 5.9 �
 

11.44 �
 (per 
kernel) 

1.12 �
 97 �
 

Efficiency (TOPSPW) 5.18-9.06 9.08 8.23 0.1 0.002 46.73 

*The shaded works did not report complete convolutional processors  

Ground Truth Simulation

 

Fig. 8  Visualization of simulation results and ground truth with pixels’ 

error distribution 



resolutions and power and efficiency of implemented analog 
circuitry. The efficiency is measured using a criterion called 
Tera (MAC) Operation Per Second Per Watt (TOPSPW), 
which is the number of (MAC) operations is done in a 
processor normalized by power and time to give an unbiased 
comparison. Shaded columns represent partial analog 
implementations of the convolutional processor while this 
work and [19] realize a complete analog convolutional 
processor. References [16] and [18] consume less power than 
our work. However, they implement only one layer of 
network, and the efficiency criterion shows 5-9 times 
improvement, normalized by network size. In addition, the 
efficiency of our work is 23365 times, and the power 
consumption is 23.9 times better than [19] which used the 
same LWCNN algorithm. 

VI.  CONCLUSION 

The paper presented a convolutional processor for CNN 
hardware acceleration based on a novel architecture. The 
proposed Funnel architecture omits the need for memories and 
dedicated ADC/DAC stages within the convolutional 
processor. A dual-purpose input layer for the convolutional 
processor was designed to satiate the accelerator with DAC 
while also performing convolution with almost a single 
transistor per an input bit. The circuit performance was 
compared to that of existing accelerators and showed 
competitive performance with significantly less power 
consumption (<1.5 nW per image) than provided by the state-
of-the-art. The achieved computational efficiency in terms of 
TOPSPW was four orders of magnitude (more than 20,000 
times) higher than the previous implementation of LWCNN 
algorithm. This extremely low power consumption and 
efficiency are promising to empower insect-sized robots with 
machine learning and modern robotic solutions. 
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