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Abstract—This work introduces an encryption scheme for
gray-scale plain-text images, which is based on a chaotic map.
Initially, the proposed chaotic map, which is a modification
of the Renyi map, is introduced and is utilized in defining a
Pseudo-Random Bit Generator. Subsequently, a finite automaton
is introduced. This, in combination with the aforementioned
PRBG defines the encryption strategy, that is, the order in which
the rows and columns are encrypted. The proposed method is
subjected to a number of statistical tests, to prove its resistance
against common attacks.

Index Terms—Chaos, Finite Automata, Image Encryption,
Pseudo-Random Bit Generation

I. INTRODUCTION

Chaos theory is a well established field which finds numer-
ous applications in a wide scientific spectrum that includes
physics, engineering, and computer science. Examples of
such applications are secure communications, optimization,
encryption and more [1]. Chaotic systems, most commonly
low dimensional chaotic maps, are predominantly used as a
deterministic source of entropy, with the added advantages of
low computational cost and ease of implementation.

One of the most common applications of chaotic maps
are Pseudo-Random Bit Generators, or PRBGs, [2], [3]. The
prominent use of chaos based PRBGs is data encryption.
New techniques for chaotic data encryption are constantly
developed, with emphasis given on image encryption, see [4],
[5] for an overview of recent results.

Also, in recent years, the use of automata in combination
with chaotic maps for encryption is gaining attention [6]–[9].
Automata are discrete dynamical models, that can describe a
sequence of transitions between states, and can be used to

model interactions between discrete entities, like cells, ma-
chines, or discrete events [10], [11]. Automata are prominent
in applications due to their close relation with logics, that
can efficiently encode their behavior. In turn, this allows to
use automata for developing coherent methods for validation,
where the goal is to verify that a system or a piece of
software is behaving according to the requirements of the
design process [12]. Applications commonly utilize cellular
automata in the definition of the encryption scheme, which are
involved in either the diffusion process, that is, in the shuffling
of the rows and columns [8] or the confusion process, where
it contributes to altering the pixel values [9].

Motivated by the above, this work proposes an automaton
driven chaos based image encryption technique. In our work,
the automaton is used, in combination with a PRBG, to
determine the order in which the operations of confusion
and diffusion are performed. More explicitly, the permutation
and encryption of the rows and columns of an image are
intertwined, based on the order generated from the transitions
of a finite state automaton, which is driven by a chaotic PRBG.
This PRBG is designed through the values of a modified
Renyi map [13], which uses an additional modulo operator for
increased randomness [14]. A key advantage of this method
is that the order in which the rows and columns are encrypted
is random, since it is connected to the values of the PRBG.
On the other hand, using finite automata to describe such a
process guarantees that the method operates properly.

Finally, the performance of the proposed encryption method
is tested using a collection of measures such as key space,
histogram, entropy and correlation analysis. All the tests
performed verify the security of the design against different



types of potential adversarial attacks.
The rest of the work is structured as follows: In Section II

the chaotic map used is defined and its behavior is presented
through its bifurcation and Lyapunov exponent diagrams. Sec-
tion III contains the definition of a PRBG using the proposed
map. In Section IV the proposed map is utilized in order to
create a permutation of a given set of integers, while Section
V describes the main step used in the encryption method.
Subsequently, Section VI presents the finite automaton and
its role in determining the encryption scheme. In Section VII
the complete encryption process is discussed, while in Section
VIII the security of the proposed encryption scheme is verified.
Finally, Section IX concludes the work.

II. A POLYNOMIAL-RENYI CHAOTIC MAP

The discrete time chaotic system used in this work is a
polynomial-Renyi map, described by

xk+1 = mod(p · x3k +mod(100 · xk, 1), 1) (1)

where p > 0 is a parameter that, for this study, is assumed to
take values inside the interval (0, 10). The bifurcation diagram

Fig. 1: Bifurcation diagram and Lyapunov exponent diagram
of (1) with initial condition x0 = 0.6.

for (1) with initial value 0.6 and Lyapunov exponent of the
system are depicted in Fig. 1. The system is chaotic for all p ∈
(0, 10), as indicated by the positive Lyapunov exponent, and
is thus a robust chaotic map [15]. This robustness, combined
with the low computational cost render (1) suitable for use in
chaotic encryption schemes.

III. PSEUDO RANDOM BIT GENERATOR

The values of the proposed chaotic map (1) are utilized in
the definition of a PRBG. From any value xk of the map (1), a
random bit is produced as the boolean result of the comparison

bk = mod(1234 · x, 2) < 1. (2)

The randomness of the proposed PRBG is verified through the
NIST statistical suite [16] for 100 bitstreams, each consisting
of 106 bits. The results of the tests are sucessful and are
presented in Table I.

IV. GENERATION OF PERMUTATIONS

The PRBG defined in Section III is utilized in the definition
of a method to generate permutations of a given set of integers.
The end goal is, given an integer n, create a set, namely N ,
that contains all the integers 1, . . . , n in arbitrary order. This
method is used to determine the order in which the rows and
columns of the plain-text image are encrypted. Let n be a

TABLE I: Results of the NIST statistical suite test for the
proposed PRBG for x0 = 0.6 and p = 5.

Test p-Value
Frequency 0.851383
BlockFreq. 0.637119
Cum.Sums 0.883171
Runs 0.319084
LongestRun 0.554420
Rank 0.437274
FFT 0.319084
NonOverl.Templ. 0.897763

Test p-Value
Overl. Templ. 0.455937
Universal 0.171867
Approx. Entropy 0.350485
Rand.Excur. 0.016717
Rand.Excur.Var. 0.037566
Serial 0.494392
LinearComplexity 0.085587

given integer. Initially, the map (1) is iterated n times, to create
a hash-map, of the form (1, x1), (2, x2), . . . , (n, xn). Subse-
quently the elements of hash-map are ordered in ascending
order of chaotic map values. The permutation is obtained via
the rearranged hash-keys.

For example, let n = 5, and consider (1) with p = 5 and
x0 = 0.6. The generated hash map and the result after reorder-
ing are shown on the left and right of Table II respectively.
Thus, the permutation for n = 5 isN =

[
3, 2, 4, 1, 5

]
.

TABLE II: Example of obtaining a permutation via the values
of the proposed map.

Index System Value

1 0.6
2 0.07999999999999985
3 0.00255999999998479
4 0.25600008388455964
5 0.6838945509178695

Index System Value

3 0.00255999999998479
2 0.07999999999999985
4 0.25600008388455964
1 0.6
5 0.6838945509178695

V. ROW AND COLUMN ENCRYPTION

Suppose now that the plain-text is a gray-scale image
I ∈ [0, 255]m×n. Using the values of the PRBG we can
generate permutations of the sets

{
0, 1, . . . ,m− 1

}
and{

0, 1, . . . , n− 1
}

namely R =
{
r0, r1, . . . , rm−1

}
, and

C =
{
c0, c1, . . . , cn−1

}
that will be used to shuffle and encrypt

the rows and columns of the image. The method for encrypting
rows is discussed next. The method for columns is obtained
as the dual of that of the rows.

Consider the index rk ∈ N. Then the kth and rk
th rows

of the matrix are involved in the current step. Initially, using
the PRBG proposed in Section III, a random bit sequence of
length 8 · n, namely ρ, is generated. Using ρ, the kth row
is encrypted by performing the element-wise XOR operation.
Subsequently, the rk th row is element-wise XORed with the
result of the previous XOR. After changing the values in both
kth and rk th row, the positions of the two rows are swapped,
and the step is complete.

Decryption is achieved by performing the steps in reverse.
Initially, the positions of the two vectors, either rows or
columns, are swapped. Subsequently, performing the XOR
operation between vectors decrypts the second one. Finally,
performing the XOR operation between the remaining vector
and the random bitstream recovers the first vector as well.



VI. AUTOMATON DEFINED ENCRYPTION SCHEME

In this section we present the automaton describing the en-
cryption process. A graphical representation of the automaton
is shown in Fig. 2, with a unique initial and final state, namely
I and F , respectively.
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1
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0

1

{0,
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{0, 1}

0

0
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1

Fig. 2: Automaton describing encryption process.

The language of the automaton, that is, the set of words that
drive the automaton from the initial state I to the final state F ,
is L =

(
021 ∪ 01{0, 1} ∪ 12{0, 1} ∪ 101

)∗ (
03 ∪ 102

)
where

A = {0, 1} is the input alphabet and S∗ denotes the concate-
nation of any number of elements of the set S. Observe that
the operations and powers shown in L denote concatenation of
characters and not integer multiplication. The above automaton
is utilized in determining the order in which the rows and
columns of the image are encrypted. Each state in Fig 2 is
named according to the role it plays in the encryption scheme.
Clearly I and F are the initial and final states. TR (resp.
TC) denotes testing if all the rows (resp. columns) have been
encrypted, SR (resp. SC) denotes swapping and encrypting
rows (resp. columns). Finally ER (resp. EC) test if all of
the columns (resp. rows) have been encrypted, given that all
of the rows (reps. columns) have been encrypted. It is thus
of uttermost importance to establish how the input letters 0
and 1 are determined for each state of the automaton. Assume
that the goal is to encrypt an m×n gray-scale image. Before
starting to iterate on the automaton, two counters namely ir
and ic are set to zero. When the system is in the initial state
I , then the letter for the next system transition comes from
iterating the PRBG. The input letter at state TR (respectively
TC) is 1 if ir < m (resp. ic < n), and 0 otherwise.
Furthermore, the index ir (resp. ic) is incremented by 1, each
time the automaton reaches the state SR (resp. SC). If the
automaton is at state SR or SC, then both 0 and 1 drive the
system to the I state, hence without any loss the letter 1 is
always given. For the state ER (resp. EC), the input letter is
1 if ic < n (resp. ir < m) is non-empty and 0 otherwise. The
state F is the final state and no transition from it is allowed.

Every word generated using the above process is recognized
by the automaton. Initially, suppose that ir < m and ic <
n. Then starting from the initial condition I , all the possible
inputs are 011, 111 which both drive the automaton back into
the initial state I . If ir ≥ m and ic < n and the state of the
automaton is I, the possible inputs are 001, 111, which both
drive the system back into I . Due to symmetry, the case where
ir < m and ic ≥ n drive the automaton into the initial state as

Fig. 3: Plain-text image and the ciphered imaged resulting
from the proposed method.

well. Finally, suppose that the automaton is at its initial state,
ir ≥ m and ic ≥ n. Then both possible inputs 100 or 000,
lead to the final state F . Hence, any word determined using
the described input values is recognized by the automaton.

VII. IMAGE ENCRYPTION SCHEME

Assume that the plain-text gray-scale image is represented
as an m × n matrix. An initial condition x0 and parameter
p for the system (1) constitute the secret key of the method.
These are also transmitted from the source to the receiver via a
secure communication channel. Using these, a map as in (1) is
defined. This map is initially used to define sets permutations
of {1, . . . ,m} and {1, . . . , n}, namely R and C as in Sec. IV.
The automaton, as in Fig. 2, is then utilized to define the order
in which the rows and columns are encrypted. Subsequently,
the automaton is used, with the input letters being determined
as discussed in Sec. VI. We keep track of the order in which
the states SR and SC appear. When the automaton reaches its
final state, keep the first m and n occurrences of SR and SC,
in the same order they appeared as automaton states in a list
O. Thus, O contains m+ n elements, indicating the order of
encryption of the rows and columns. For each SR or SC in
O, the respective index in the sets R and C determines which
rows or columns are involved in each encryption step. Finally,
the encryption in each step is performed as discussed in Sec.
VII. The method is complete when the encryption operation
is performed for every element indicated by O.

The decryption process follows similar steps. More explic-
itly, taking the same initial conditions into consideration, the
sets R and C are recreated. Furthermore, the automaton allows
for the recreation of the O set. Having the set O, all of the
sequences of random bits can be recreated in order. Finally,
having computed all of the bit streams the image is decrypted
by taking the elements of O in reverse order and performing
the decryption process based on the row and column indices.

VIII. METHOD APPLICATION AND EVALUATION

The proposed method has been implemented using Python
and is applied to the ”peppers” image, which was downloaded
from https://sipi.usc.edu/database/. The plain and cipher-text
images are depicted in Fig. 3.

One of the most important characteristics for the encryption
method is its key space, which has to have a value of more
than 2100 [17] in order to guarantee that the proposed method
is secure against brute-force attacks. System (1) requires a
parameter p and an initial condition x0. Thus, assuming 16-bit
accuracy, a lower bound for the key space is 10(2·16) > 2100.



One of the most common types of attacks against image
encryption schemes is the histogram attack. It is desired that
the encrypted image’s histogram is close to uniform, masking
the existence of meaningful information. The proposed method
achieves this, as can be verified through Fig. 4.

Fig. 4: Histogram of the plain-text and cipher images.

Another important security test is that of information en-
tropy, which is used to determine the security of the method
against entropy attacks. The entropy of an image is calculated

as the sum
28−1∑
i=0

p(i) log2(p(i)) where p(i) denotes the prob-

ability that i appears as a pixel value. Information entropy
having a value of 8 indicates that the pixel values are random
[18]. Calculating the information entropy for the example
cipher image leads to a value of 7.9991995 which is close
enough to 8, so that the pixel values are considered random.

Finally, when an image contains meaningful information,
adjacent pixels tend to have similar values, thus leading to ad-
jacent row and columns of the image having high correlation.
It is desired that this is not transferred to the resulting image. In
Fig. 5 the correlation of subsequent rows and columns for the
plain-text and cipher-text images are presented. It can be seen
that the scatter plot for the original image has high correlation
values and also has a structure, none of which holds for the
cipher-image.

Fig. 5: Correlation of subsequent rows (above) and columns
(below) for the plain-text and cipher-text images.

IX. CONCLUSIONS

In this work, a chaos based image encryption technique was
developed, using a mixed row and column permutation, an
encryption rule, generated using a chaotic PRBG, and a finite
state automaton. The use of automata in this work allows
the method to imbue randomness upon the confusion and
diffusion precesses while guaranteeing that desired standards
for the encryption scheme, such as shuffling every image row
and column, are met. In the future, the proposed encryption
method’s resistance against more types of attacks shall be

investigated. Furthermore, different types of automata such as
fuzzy [19] will be considered.
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