Automata-Derived Chaotic Image Encryption Scheme

Ioannis Kafetzis
Laboratory of Nonlinear Systems,
Circuits & Complexity (LaNSCom),
Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, Greece
kafetzis@physics.auth.gr

Lazaros Moysis
Laboratory of Nonlinear Systems,
Circuits & Complexity (LaNSCom),
Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, Greece
lmousis@physics.auth.gr

Hector Nistazakis
Section of Electronic Physics and Systems
Department of Physics,
National and Kapodistrian
University of Athens
Athens, Greece
enistaz@phys.uoa.gr

Christos Volos
Laboratory of Nonlinear Systems,
Circuits & Complexity (LaNSCom),
Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, Greece
voulos@physics.auth.gr

Jesus M. Munoz-Pacheco
Facultad de Ciencias de la Electronica
Benemerita Universidad
Autonoma de Puebla
Puebla, Mexico
jesusm.pacheco@correo.buap.mx

Ioannis Stouboulos
Laboratory of Nonlinear Systems,
Circuits & Complexity (LaNSCom),
Department of Physics
Aristotle University of Thessaloniki
Thessaloniki, Greece
stouboulos@physics.auth.gr

Abstract—This work introduces an encryption scheme for gray-scale plain-text images, which is based on a chaotic map. Initially, the proposed chaotic map, which is a modification of the Renyi map, is introduced and is utilized in defining a Pseudo-Random Bit Generator. Subsequently, a finite automaton is introduced. This, in combination with the aforementioned PRBG defines the encryption strategy, that is, the order in which the rows and columns are encrypted. The proposed method is subjected to a number of statistical tests, to prove its resistance against common attacks.

Index Terms—Chaos, Finite Automata, Image Encryption, Pseudo-Random Bit Generation

I. INTRODUCTION

Chaos theory is a well established field which finds numerous applications in a wide scientific spectrum that includes physics, engineering, and computer science. Examples of such applications are secure communications, optimization, encryption and more [1]. Chaotic systems, most commonly low dimensional chaotic maps, are predominantly used as a deterministic source of entropy, with the added advantages of low computational cost and ease of implementation.

One of the most common applications of chaotic maps are Pseudo-Random Bit Generators, or PRBGs, [2], [3]. The prominent use of chaos based PRBGs is data encryption. New techniques for chaotic data encryption are constantly developed, with emphasis given on image encryption, see [4], [5] for an overview of recent results.

Also, in recent years, the use of automata in combination with chaotic maps for encryption is gaining attention [6]–[9]. Automata are discrete dynamical models, that can describe a sequence of transitions between states, and can be used to model interactions between discrete entities, like cells, machines, or discrete events [10], [11]. Automata are prominent in applications due to their close relation with logics, that can efficiently encode their behavior. In turn, this allows to use automata for developing coherent methods for validation, where the goal is to verify that a system or a piece of software is behaving according to the requirements of the design process [12]. Applications commonly utilize cellular automata in the definition of the encryption scheme, which are involved in either the diffusion process, that is, in the shuffling of the rows and columns [8] or the confusion process, where it contributes to altering the pixel values [9].

Motivated by the above, this work proposes an automaton driven chaos based image encryption technique. In our work, the automaton is used, in combination with a PRBG, to determine the order in which the operations of confusion and diffusion are performed. More explicitly, the permutation and encryption of the rows and columns of an image are intertwined, based on the order generated from the transitions of a finite state automaton, which is driven by a chaotic PRBG. This PRBG is designed through the values of a modified Renyi map [13], which uses an additional modulo operator for increased randomness [14]. A key advantage of this method is that the order in which the rows and columns are encrypted is random, since it is connected to the values of the PRBG. On the other hand, using finite automata to describe such a process guarantees that the method operates properly.

Finally, the performance of the proposed encryption method is tested using a collection of measures such as key space, histogram, entropy and correlation analysis. All the tests performed verify the security of the design against different
The values of the proposed chaotic map (1) are utilized in the definition of a PRBG. From any value x_k of the map (1), a random bit is produced as the boolean result of the comparison

$$b_k = \text{mod}(1234 \cdot x, 2) < 1.$$

The randomness of the proposed PRBG is verified through the NIST statistical suite [16] for 100 bitstreams, each consisting of 10^6 bits. The results of the tests are successful and are presented in Table I.

V. ROW AND COLUMN ENCRYPTION

Suppose now that the plain-text is a gray-scale image $I \in [0, 255]^{m \times n}$. Using the values of the PRBG we can generate permutations of the sets $\{0, 1, \ldots, m-1\}$ and $\{0, 1, \ldots, n-1\}$ namely $R = \{r_0, r_1, \ldots, r_{m-1}\}$, and $C = \{c_0, c_1, \ldots, c_{n-1}\}$ that will be used to shuffle and encrypt the rows and columns of the image. The method for encrypting rows is discussed next. The method for columns is obtained as the dual of that of the rows.

Consider the index $r_k \in \mathbb{N}$. Then the k^{th} and r_k^{th} rows of the matrix are involved in the current step. Initially, using the PRBG proposed in Section III, a random bit sequence of length $8 \cdot n$, namely ρ, is generated. Using ρ, the k^{th} row is encrypted by performing the element-wise XOR operation. Subsequently, the r_k^{th} row is element-wise XORed with the result of the previous XOR. After changing the values in both k^{th} and r_k^{th} row, the positions of the two rows are swapped, and the step is complete.

Decryption is achieved by performing the steps in reverse. Initially, the positions of the two vectors, either rows or columns, are swapped. Subsequently, performing the XOR operation between vectors decrypts the second one. Finally, performing the XOR operation between the remaining vector and the random bitstream recovers the first vector as well.
VI. AUTOMATON DEFINED ENCRYPTION SCHEME

In this section we present the automaton describing the encryption process. A graphical representation of the automaton is shown in Fig. 2, with a unique initial and final state, namely I and F, respectively.

![Fig. 2: Automaton describing encryption process.](image)

The language of the automaton, that is, the set of words that drive the automaton from the initial state I to the final state F, is $L = \{(0^21 \cup 01\{0,1\} \cup 1^2\{0,1\} \cup 101)^1 \cup 0^2\}$ where $A = \{0, 1\}$ is the input alphabet and S^* denotes the concatenation of any number of elements of the set S. Observe that the operations and powers shown in L denote concatenation of characters and not integer multiplication. The above automaton is utilized in determining the order in which the rows and columns of the image are encrypted. Each state in Fig. 2 is named according to the role it plays in the encryption scheme. Clearly I and F are the initial and final states. TR (resp. TC) denotes testing if all the rows (resp. columns) have been encrypted, SR (resp. SC) denotes swapping and encrypting rows (resp. columns). Finally ER (resp. EC) test if all of the columns (resp. rows) have been encrypted, given that all of the rows (resp. columns) have been encrypted. It is thus of uttermost importance to establish how the input letters 0 and 1 are determined for each state of the automaton. Assume that the goal is to encrypt an $m \times n$ gray-scale image. Before starting to iterate on the automaton, two counters namely i_r and i_c are set to zero. When the system is in the initial state I, then the letter for the next system transition comes from iterating the PRBG. The input letter at state TR (respectively TC) is 1 if $i_r < m$ (resp. $i_c < n$), and 0 otherwise. Furthermore, the index i_r (resp. i_c) is incremented by 1, each time the automaton reaches the state SR (resp. SC). If the automaton is at state SR or SC, then both 0 and 1 drive the system to the I state, hence without any loss the letter 1 is always given. For the state ER (resp. EC), the input letter is 1 if $i_c < n$ (resp. $i_r < m$) is non-empty and 0 otherwise. The state F is the final state and no transition from it is allowed.

Every word generated using the above process is recognized by the automaton. Initially, suppose that $i_r < m$ and $i_c < n$. Then starting from the initial condition I, all the possible inputs are 011, 111 which both drive the automaton back into the initial state I. If $i_r \geq m$ and $i_c < n$ and the state of the automaton is I, the possible inputs are 001, 111, which both drive the system back into I. Due to symmetry, the case where $i_r < m$ and $i_c \geq n$ drive the automaton into the initial state as well. Finally, suppose that the automaton is at its initial state, $i_r \geq m$ and $i_c \geq n$. Then both possible inputs 100 or 000, lead to the final state F. Hence, any word determined using the described input values is recognized by the automaton.

VII. IMAGE ENCRYPTION SCHEME

Assume that the plain-text gray-scale image is represented as an $m \times n$ matrix. An initial condition x_0 and parameter p for the system (1) constitute the secret key of the method. These are also transmitted from the source to the receiver via a secure communication channel. Using these, a map as in (1) is defined. This map is initially used to define sets permutations of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, namely R and C as in Sec. IV. The automaton, as in Fig. 2, is then utilized to define the order in which the rows and columns are encrypted. Subsequently, the automaton is used, with the input letters being determined as discussed in Sec. VI. We keep track of the order in which the states SR and SC appear. When the automaton reaches its final state, keep the first m and n occurrences of SR and SC, in the same order they appeared as automaton states in a list O. Thus, O contains $m+n$ elements, indicating the order of encryption of the rows and columns. For each SR or SC in O, the respective index in the sets R and C determines which rows or columns are involved in each encryption step. Finally, the encryption in each step is performed as discussed in Sec. VII. The method is complete when the encryption operation is performed for every element indicated by O.

The decryption process follows similar steps. More explicitly, taking the same initial conditions into consideration, the sets R and C are recreated. Furthermore, the automaton allows for the recreation of the O set. Having the set O, all of the sequences of random bits can be recreated in order. Finally, having computed all of the bit streams the image is decrypted by taking the elements of O in reverse order and performing the decryption process based on the row and column indices.

VIII. METHOD APPLICATION AND EVALUATION

The proposed method has been implemented using Python and is applied to the "peppers" image, which was downloaded from https://sipi.usc.edu/database/. The plain and cipher-text images are depicted in Fig. 3.

![Fig. 3: Plain-text image and the ciphered image resulting from the proposed method.](image)
One of the most common types of attacks against image encryption schemes is the histogram attack. It is desired that the encrypted image’s histogram is close to uniform, masking the existence of meaningful information. The proposed method achieves this, as can be verified through Fig. 4.

Another important security test is that of information entropy, which is used to determine the security of the method against entropy attacks. The entropy of an image is calculated as the sum $\sum_{i=0}^{2^8-1} p(i) \log_2(p(i))$ where $p(i)$ denotes the probability that i appears as a pixel value. Information entropy having a value of 8 indicates that the pixel values are random [18]. Calculating the information entropy for the example cipher image leads to a value of 7.9991995 which is close enough to 8, so that the pixel values are considered random.

Finally, when an image contains meaningful information, adjacent pixels tend to have similar values, thus leading to adjacent row and columns of the image having high correlation. It is desired that this is not transferred to the resulting image. In Fig. 5 the correlation of subsequent rows and columns for the plain-text and cipher-text images are presented. It can be seen that the scatter plot for the original image has high correlation values and also has a structure, none of which holds for the cipher-image.

Fig. 4: Histogram of the plain-text and cipher images.

Fig. 5: Correlation of subsequent rows (above) and columns (below) for the plain-text and cipher-text images.

IX. CONCLUSIONS

In this work, a chaos based image encryption technique was developed, using a mixed row and column permutation, an encryption rule, generated using a chaotic PRBG, and a finite state automaton. The use of automata in this work allows the method to imbue randomness upon the confusion and diffusion processes while guaranteeing that desired standards for the encryption scheme, such as shuffling every image row and column, are met. In the future, the proposed encryption method’s resistance against more types of attacks shall be investigated. Furthermore, different types of automata such as fuzzy [19] will be considered.

X. ACKNOWLEDGMENTS

The authors acknowledge funding from National and Kapodistrian University of Athens (NKUA), Special Account for Research Grants (SARG).

REFERENCES

