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Abstract—Resource allocation in wireless networks, i.e., assign-
ing time and frequency slots over specific terminals under spatio-
temporal constraints, is a fundamental and challenging problem.
Belief Propagation/message passing (inference) algorithms have
been proposed for constraint satisfaction problems (CSP), since
they are inherently amenable to distributed implementation. This
work compares two message passing algorithms for time and
frequency allocation, satisfying signal-to-interference-and-noise-
ratio, half-duplex-radio operation and routing constraints. The
first method periodically checks whether the constraints are
satisfied locally and restarts specific messages, when the local
constraints (encoded in corresponding factors) are not satisfied.
The second method stochastically perturbs Belief Propagation,
using Gibbs sampling. The methods are evaluated, based on
how often they fail to converge to a valid (i.e., constraint-
satisfying) allocation, coined as outage probability. Numerical
results demonstrate that, as the maximum number of iterations
increase, both methods decrease the outage probability. However,
the restarting method offers faster convergence to a valid CSP
solution. Future work will focus on next generation 5/6G wireless
networks.

Index Terms—Resource Allocation, Constraint Satisfaction,
Message Passing, Wireless Networks.

I. INTRODUCTION

In a real-world scenario, time and frequency allocation in
wireless sensor networks (WSN) is a very challenging task,
due to the limited availability of resources [1]. Existing work
in WSN resource allocation includes centralized [1]–[3], as
well as distributed protocols [4]–[8]. In distributed protocols,
the communication is limited only to neighboring nodes,
whereas in centralized protocols, each node requires knowl-
edge of the global network topology. Especially for large-scale
WSN, the use of centralized protocols is discouraged, due to
the high computational cost and delay times.

In this paper, we jointly solve the problem of WSN time and
frequency allocation by utilizing Belief Propagation (BP); the
latter is an algorithm inherently amenable to distributed im-
plementation, due to its message passing nature. The problem
formulation follows our previous work [9], [10], inspired by
[11], where the joint frequency and time allocation problem
is encoded into a factor graph. However, in this work, we test
a different inference procedure, based on perturbed BP [12]
and compare it with the existing, state-of-the-art distributed
algorithm in [10].

The rest of this paper is organized as follows: Section II
offers the problem formulation and the basic assumptions.
Section III describes the factor graph model that encodes

the resource allocation problem, while sections IV-V provide
a description of the algorithms utilized for the underlying
constraint satisfaction problem (CSP). Section VI offers a
comparison on algorithm performance and finally, Section VII
concludes this work.

II. SYSTEM MODEL

Assume M time slots and K orthogonal frequency channels
are available for a WSN, which consists of N half-duplex
radio terminals. Each terminal transmits one packet at a given
time slot m ∈ M ≜ {1, 2, . . . ,M}, on a specific frequency
channel k ∈ K ≜ {1, 2, . . . ,K}. Let us also define the set
of all terminals by N ≜ {1, . . . , N} and N\s the set of all
terminals, excluding the sink. The latter is the destination of
all packets and operates only in receiver mode. A sensor i′ will
be an actual interferer of the link (i, j) between two sensors,
if the following condition holds:

SINRi→j =
Pi|hi,j |2

σ2
j + Pi′ |hi′,j |2

< θ, (1)

where Pi is the power of transmitter i, hi,j is the instantaneous
channel gain coefficient between transmitter i and receiver
j incorporating both large and small scale fading, σ2

j is
the thermal noise power at receiver j, and θ is a threshold
parameter that depends on the sensitivity of each receiver.

III. FACTOR GRAPH MODEL

A factor graph is a bipartite graph with vertices that are
either variable or factor nodes. Let us define the random binary
variables as s

(k)
i,m, where i ∈ N\s, m ∈ M and k ∈ K. The

binary variables s(k)i,m are called scheduling variables, meaning
that if s

(k)
i,m = 1, the terminal i is scheduled to transmit a

packet at time slot m, on frequency channel k. Likewise, when
s
(k)
i,m = 0, no transmission occurs for the terminal i on the

specified frequency and time slot. The set of all factor nodes
is given by [10]:

{gJ}(N−1)(2M+1)+M
J=1 =

{
{fi,m}(i,m)∈N×M ,

{hi,m}(i,m)∈N\s×M ,

{ti}i∈N\s

}
.

(2)

The factors denoted by fi,m impose the routing constraints (so
that information reaches the sink), where i ∈ N and m ∈M.
The interference constraints are imposed by the set of factors



hi,m, where i ∈ N\s and m ∈ M. Lastly, factors ti enforce
the transmission constraints, where i ∈ N\s. Thus, the total
number of factors is equal to NM + (N − 1)M + (N − 1) =
(N −1)(2M +1)+M . Each factor node is a binary function,
which outputs one if the corresponding constraint is satisfied
and zero otherwise. We seek to satisfy all constraints, which
means that we want to find a random variable assignment
for which the output of all factor functions is one. For this
purpose, the Belief Propagation (BP) algorithm is utilized.
In BP, the neighboring nodes of a graph iteratively send
messages to each other to compute the marginals of the joint
distribution, encoded by the graph. In a factor graph, BP
messages are grouped into two categories: variable-to-factor
and factor-to variable. Let us first define a vector denoted
by x, which consists of all xv ≡ s

(k)
i,m variables, where

v ∈ {1, . . . , (N − 1)MK}, since the sink terminal cannot
transmit on any slot. A detailed scheme for a factor graph
of a simple WSN can be found in [10]. The BP messages
exchanged in such graph are given by:

m
(n)
J→v(xv) = C

(n)
J→v(q̄)×∑

xy :y∈∂(J)\v

{
g (xv;xy)

∏
y∈∂(J)\v

m
(n−1)
y→J (xy)

}
, (3)

m
(n)
v→J(xv) = C

(n)
v→J(q̄)×

Pv(xv)
∏

I∈∂(v)\J

m
(n)
I→v(xv),

(4)

which describe the factor-to-variable messages and variable-
to-factor messages at iteration n, respectively. The notation
∂(·) indicates the set of neighbors for the factor or variable
inside the parenthesis, while the quantity Pv(xv) refers to the
prior probability of the variable xv , where Pv(xv = 0) = qv
and Pv(xv = 1) = 1−qv . The normalization factors C(n)

v→J(q)

and C
(n)
J→v(q) guarantee that m(n)

v→J(xv = 0) +m
(n)
v→J(xv =

1) = 1 and m
(n)
J→v(xv = 0) + m

(n)
J→v(xv = 1) = 1,

respectively. Their value depends on a subset of the priors
q

△
=

[
q1 q2 · · · q(N−1)MK

]
∈ [0, 1](N−1)MK as well as

the current iteration. The BP messages are initialized in the
following manner:

m
(n=0)
v→J (xv = 0) = 1−m

(n=0)
v→J (xv = 1) = qv, (5)

m
(n=0)
J→v (xv = 0) = m

(n=0)
J→v (xv = 1) = 0, (6)

with qv ∼ U [0, 1], where the notation U [0, 1] denotes the
continuous uniform distribution over the (closed) interval
[0, 1]. The estimated marginals for a variable xv at iteration
n, are given by:

µ̂(n)
v (xv) = Pv(xv)

∏
I∈∂(xv)

m
(n)
I→v(xv). (7)

Finally, given Eq. (7), we compute the random variable deci-
sions by performing hard decision on the estimated marginals:

x∗ = µ̂(x = 0) < µ̂(x = 1). (8)

A random variable assignment x∗ is satisfiable, if given this
assignment, all constraints (factors) are satisfied. Due to the

loopy nature of the factor graphs that encode the specific WSN
resource allocation problem, the convergence and correctness
of the BP messages is not guaranteed and thus, the estimated
marginals in Eq. (7) are not always accurate. Therefore, we
seek for methods to guarantee BP convergence and correct-
ness.

IV. RESTARTING METHOD

A method called restarting [10] solves the WSN CSP with
a low outage probability (i.e., probability of convergence
to a non-valid solution), when compared to standard Belief
Propagation. The restarting method includes a periodic check
of the factor functions output, given the random variable
decisions. More specifically, every Ninterm iterations, the
priors of the random variables connected to unsatisfied factors
are (randomly) re-initialized, therefore resulting in restarting
the messages that are a function of these variables. For
convergence acceleration, damping is performed on the BP
messages. The restarting method, as described in Algorithm
1, terminates after a given number of iterations, denoted by
Tmax.

In this context, we should mention that this method has
strong connections to already existing, control theory tech-
niques for system stabilization to a (specific) fixed point [13],
[14]. The re-initialization of the priors can be seen as an
intentionally added perturbation to the discrete-time system
that describes the BP messages [15], as in [14]. Alternatively,
the periodic satisfiability check can be seen as a test for the
occurrence of the event that triggers the re-adjustment of the
input (i.e., prior probabilities) of the same system, as in [13].

V. PERTURBED BELIEF PROPAGATION

The second method, called Perturbed Belief Propagation
[12], smoothly interpolates two well-known inference proce-
dures; it starts as BP and ends as a Gibbs sampler:

mi→I ← γ ·mi→I + (1− γ) · δ(xi − x̂i), (9)

where δ(·) is the Dirac function and γ ∈ [0, 1]. The Gibbs
sampler updates each sample x̂i by sampling from:

x̂i ∼ µ̂i(xi). (10)

The parameter γ smoothly increases from 0 to 1, stochastically
biasing the BP messages towards the current estimate of
marginals. Since the procedure is inherently stochastic, if
the CSP is satisfiable, re-application of perturbed BP to the
problem (i.e., as described in Algorithm 2), may provide a
valid solution. 1

1Other variations of perturbed BP were also examined (e.g., incorporating
local re-initialization/restarting of messages or message contradiction check
as in [12]), but failed to provide better algorithm performance.



Algorithm 1: Restarting method
Data: CSP factor graph, number of maximum

iterations Tmax, Ninterm, damping factor α
Result: variable assignment x∗

1 initialize the messages and priors;
2 for t = 1 to Tmax do
3 for each variable xi do
4 calculate m

(t)
I→i,∀i ∈ ∂(I) using Eq. (3);

5 damping: m(t)
I→i = α ·m(t−1)

I→i +(1−α) ·m(t)
I→i;

6 end
7 for each variable xi do
8 calculate m

(t)
i→I ,∀I ∈ ∂(i) using Eq. (4);

9 calculate µ̂i(xi) using Eq. (7);
10 end
11 if mod (t,Ninterm) == 0 then
12 if CSP unsatisfied then
13 for each unsatisfied factor J do
14 for each xy ∈ ∂(J) do
15 restart m(t+1)

y→I ,∀I ∈ ∂(y)

16 end
17 end
18 end
19 end
20 end
21 return x∗;

Algorithm 2: Perturbed BP method
Data: CSP factor graph, number of iterations T
Result: variable assignment x∗

1 initialize the messages and priors;
2 γ ← 0;
3 for t = 1 to T do
4 for each variable xi do
5 calculate m

(t)
I→i,∀i ∈ ∂(I) using Eq. (3);

6 end
7 for each variable xi do
8 calculate m

(t)
i→I ,∀I ∈ ∂(i) using Eq. (4);

9 calculate µ̂
(t)
i (xi) using Eq. (7);

10 sample x̂i ∼ µ̂
(t)
i (xi);

11 m
(t)
i→I ← γ ·m(t)

i→I + (1− γ) · δ(xi, x̂i);
12 end
13 γ ← γ + 1

T−1 ;
14 end
15 return: x∗;

VI. SIMULATION RESULTS

For the simulation results, we will use two different net-
works, whose routing connectivity is depicted in Fig. 1. The
number of available frequency channels/slots is set to K = 2
and the number of available time slots is set to M = 4. For the
9-terminal WSN, the SINR threshold θ is set to 3 and 9 dB,
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Fig. 1: Connectivities for the wireless sensor networks used
in simulations

while for the 35-terminal WSN it is set to 8 dB. Regarding the
restarting method, the Ninterm parameter is set to 5 and 8, for
the small and large network topology, respectively, while the
damping factor is set to α = 0.3. For perturbed BP, the number
of iterations is set to T = 10 at the starting attempt, which was
increased by a factor of 2 in case of failure (i.e., unsatisfying
assignment x∗). This is repeated until the cumulative number
of iterations exceeds a predetermined value, denoted by Tmax,
or until a satisfiable assignment x∗ is found.

We evaluate the performance of the restarting and perturbed
methods by calculating the outage probability, i.e., the proba-
bility of a method providing a non-valid solution for a given
maximum number of BP iterations. The maximum number of
iterations is set to Tmax = {30, 70, 150, 310} so that perturbed
BP completes at most 2, 3, 4 and 5 attempts, respectively. The
results in Fig. 2-3 and Fig. 4 were obtained by averaging over
103 and 500 Monte Carlo experiments, respectively.

These results demonstrate that, as the maximum number
of iterations increases, both methods decrease the probability
of outage. Additionally, both methods provide higher outage
probability for the 35-terminal network, when compared to
the 9-terminal network results. This can be explained by
the higher problem complexity of the 35-terminal resource
allocation problem, caused by large number of terminals
and limited number of resources. Regarding the performance
comparison of the two methods, it can be seen that perturbed
BP is outperformed by the restarting method, regardless of
the network size. As it can be seen clearly in Fig. 4, the
restarting method offers lower outage probability for a given
Tmax value, when compared to perturbed BP. A comparison of
the results in Figs. 2-3 also shows that for larger θ (i.e. larger
number of interference constraints), perturbed BP provides
better performance results. This is a very interesting result
that requires further investigation.

VII. CONCLUSION

In this work, we jointly solve the time and frequency
allocation problem for wireless networks by utilizing perturbed
BP. We then show that the algorithm in prior art outperforms
perturbed BP by providing faster convergence to a satisfiable
solution for the imposed Constraint Satisfaction Problem.
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Fig. 2: Outage probability of convergence to a valid solution
VS maximum number of BP iterations, Tmax, for the 9-
terminal network (N = 9, M = 4, K = 2). The SINR
threshold is set to θ = 3 dB.
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Fig. 3: Outage probability of convergence to a valid solution
VS maximum number of BP iterations, Tmax, for the 9-
terminal network (N = 9, M = 4, K = 2). The SINR
threshold is set to θ = 9 dB.

Future work will focus on the extension of both algorithms
for heterogeneous and 5/6G wireless networks.
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