
Optimizing Savitzky-Golay Filter on GPU and
FPGA Accelerators for Financial Applications

Ioannis Oroutzoglou
Aristotle University of Thessaloniki

Thessaloniki, Greece
ioroutzo@physics.auth.gr

Argyris Kokkinis
Aristotle University of Thessaloniki

Thessaloniki, Greece
akokkino@physics.auth.gr

Aggelos Ferikoglou
Aristotle University of Thessaloniki

Thessaloniki, Greece
aferikog@physics.auth.gr

Dimitrios Danopoulos
Aristotle University of Thessaloniki

Thessaloniki, Greece
ddanopou@physics.auth.gr

Dimosthenis Masouros
Aristotle University of Thessaloniki

Thessaloniki, Greece
dmasoura@physics.auth.gr

Kostas Siozios
Aristotle University of Thessaloniki

Thessaloniki, Greece
ksiop@physics.auth.gr

Abstract—Over the last few years, computational power and
intelligence are becoming more and more necessary in the
sector of finance. More specifically, computational finance turns
into a very popular topic for both academia and industry,
where numerous published works from this field and especially
investment and risk management, showcase the effects of these
technological advancements. At the same time, the ever-increased
computational demands have led to the deployment of various
accelerators in order to meet both latency and power constraints
for financial applications that vary from special purpose, made by
economists, to general purpose Digital Signal Processing (DSP)
applied in financial time-series. One of the most widely used
applications, belonging to the 2nd category, is the Savitzky-
Golay algorithm, a filter used for smoothing time-series data. In
this work, we propose a mechanism that automatically creates
different accelerated Savitzky-Golay filters for GPUs and FPGAs,
based on a set of pre-accelerated templates. By evaluating the
provided templates with a set of real use-case parameters, a
speedup of x33.5 on the NVIDIA T4 GPU and x21.9 on the
Alveo U50 FPGA is achieved compared with an Intel Xeon Gold
5218R CPU as a baseline, while achieving a decrease in power
consumption of 89% and 70% respectively, disclosing a real
latency-power trade-of between both accelerators.

Index Terms—Savitzky-Golay Filter, GPU, FPGA, Computa-
tional Finance, FinTech

I. INTRODUCTION

In recent years, the advancements in computing have dra-
matically changed the human understanding in a wide range
of scientific fields. The ever-increased available processing
power enabled the analysis of enormous volumes of data,
providing meaningful insight in both academia and industry.
From the High Performance Computing (HPC) point of view,
among the technologies that allowed the management of the
ever-increased computational demands, was the introduction
of various specialized hardware acceleration platforms. Such
devices (e.g., GPUs, FPGAs) can achieve higher performance
than typical processing systems for the same power envelope
[1]. By mapping the computationally intensive parts of an

We thank Mellanox Technologies for their kind contribution of the NVIDIA
T4 GPU device.

Fig. 1. Execution time of a Savitzky-Golay filter with a window size of 15
and polynomial order of 4 with input’s signal size 20 KB.

application to these highly specialized units, CPUs can be
enhanced and their power consumption can be significantly
decreased.

The implications of hardware acceleration are immense in
the finance sector and especially in investment/risk manage-
ment. The main bottleneck in the calculations of this domain
is the existence of no (semi)closed-form pricing formulas
in the market models [2]. Evaluating by applying numerical
approximations, for a complete portfolio, can be very time
consuming, lasting from hours to days on state-of-the-art
compute clusters with thousands of cores [3]. The situation
becomes even worse as the complexity of the underlying
market models and financial products increases, showcasing
the necessity of using specialized hardware platforms.

In investment management, the stock closing price signal
pre-processing constitutes an important phase for portfolio
analysis. In particular, smoothing is a frequently used op-
eration, as it is an essential preparation step for training
models for market prediction. The Savitzky-Golay filter has
been proven to be an excellent algorithm for this operation
[4]. Nevertheless, its computationally intensive nature forms
significant limitations.

The execution of every FIR filter consists of two phases.
At first, the coefficients are calculated based on the filter’s
characteristics. Secondly, the filter’s output is generated given
an input signal and the calculated filter’s coefficients. However,
the process of filtering an input signal by performing discrete
convolutions creates a bottleneck for achieving low-latency
filtering, as it is depicted in Figure 1 .

Over the last years, researchers have leveraged hardware
platforms for accelerating the computationally intensive part
of the Savitzky-Golay filter. Agarwal et al [5] in their work
implemented a Savitzky-Golay filter on a FPGA device using
an HDL (Hardware Description Language) design flow for
smoothing ECG and EEG signals. They showed that low-area
designs on FPGA can lead to high-performance signal pro-
cessing for biomedical applications. In another work, Belloch
et al [6] accelerated multiple 1D convolutions from different
audio channels on GPU devices using a concurrent execution
method, exhibiting acceleration of massive convolution opera-
tions. Nevertheless, in the proposed bibliography, users are not
able to easily modify the filter’s parameters (i.e. polynomial
order and window size) in the final accelerated designs.

In this paper, a mechanism for creating different accelerated
Savitzky-Golay filters is proposed. By applying the filter’s
parameters to a pre-designed accelerated template, users are
able to easily try different filters for different acceleration
devices. The templates are evaluated using the filter parameters
of a real use case for a Nvidia T4 GPU and an Alveo U50
FPGA.

The paper is organized as follows: Section II describes the
filtering algorithm and the workflow for application develop-
ment on FPGA and GPU devices. Section III presents the
implemented methodology of creating the pre-accelerated filter
templates. Section III shows the evaluation results. Section IV
shows the conclusion of the paper.

II. BACKGROUND

Savitzky-Golay Filtering Algorithm:
The Savitzky-Golay finite impulse response (FIR) smooth-

ing filter is also known as polynomial smoothing or least-
squares smoothing filter. It is the general form of the FIR
average filter that is able to preserve the high frequency
component of a signal, at the cost of removing less noise in
comparison to the average filter [7]. The Savitzky-Golay filter
is frequently used for smoothing time series data [8] as it is
able to fit adjacent data points with a low-degree polynomial.

The filter is specified by two parameters: a) the window
that defines the number of adjacent data points and b) the
order of the desired polynomial. The filter’s coefficients are
solely dependent on the polynomial order and on the window
size, meaning that for a given window and polynomial or-
der the filter’s coefficients are fixed. The smoothing process
is performed by applying convolution between the signal’s
coefficients and the window adjacent data points. Once, the
convolution for a specific window has been completed the
window is shifted and the convolution is performed for the
next set of data.

Fig. 2. Smoothing time-series using Savitzky-Golay filter

Figure 2 depicts a signal smoothed by applying the
Savitzky-Golay filter with a window size of 10 and polynomial
order of 3 on a time series composed of 200 data points.

FPGA Design Methodologies: Designing hardware for
FPGAs can be performed at varying levels of abstraction with
the commonly used being the register-transfer level (RTL) and
the algorithmic level. These methodologies differ; RTL (i.e.,
VHDL, Verilog) is used for circuit-level programming while
algorithmic level methodologies such as High-Level Synthesis
(HLS) are used for describing designs in a higher level of
abstraction. Compared to RTL, HLS provides a faster and
more flexible development process, as designers instruct the
HLS compiler on how to synthesise kernels by adding different
directives on a C/C++ or OpenCL code.

Xilinx [9], one of the main FPGA vendors on the market,
has put significant effort into providing a user-friendly tool-
set for employing High-Level Synthesis on FPGA design. It
introduced Vitis [10], a framework able to provide a uni-
fied OpenCL interface for programming edge (e.g., MPSoC
ZCU104) and cloud (e.g., Alveo U200) FPGAs. Simplifying
the designing process, developers are able to focus on finding
the optimal HLS directives with respect to the target device’s
architecture.

GPU Design Methodologies:
Accordingly, GPU’s programmability is significantly im-

proved over the years with high level languages such as CUDA
[11] and OpenCL [12] to be the most popular approaches.
CUDA programming model, released by NVIDIA, stands
for Compute Unified Device Architecture and is a parallel
programming paradigm supporting only NVIDIA GPUs, while
OpenCL was launched by Apple and the Khronos group as
a way to provide a portable language for various types of
processors. Even though CUDA and OpenCL offer different
interfaces for programming GPUs, they both handle their
data in a very similar way, while providing an abstraction of
GPU architecture, exposed in general-purpose programming
languages such as C/C++. For the scope of this work, our
description relies on the CUDA terminology, as this is the
programming model that is used for accelerating the filters.

block0 block1 blockN

K e r n e l g r i d G P U

Fig. 3. CUDA grid

Fig. 4. Proposed methodology

There are 2 keywords widely used in CUDA model: host
and device. Host constitutes the CPU available in the
system while the system memory associated with it is called
host memory. Additionally, the GPU is called device and
its memory likewise is called device memory. For a CUDA
program execution, the developers, at first, need to copy the
input data from the host to device memory, also known as host-
to-device transfer. Afterwards they need to load their CUDA
kernel to be executed and, finally, to copy their results from
the device to host memory, also called device-to-host transfer.
Every CUDA kernel starts with a __global__ declaration
specifier, with programmers providing a unique global ID
to each thread by using built-in variables. Total threads are
grouped in CUDA blocks, where all blocks form a kernel grid.
Figure 3 depicts an abstract representation of how CUDA
threads are organized and mapped on the GPU.

III. IMPLEMENTED METHODOLOGY

To speed-up the workflow of generating and implement-
ing different versions of accelerated Savitzky-Golay filters,
a designing flow that generates performance optimized HLS
and CUDA kernels based on the pre-designed optimized filter
templates was developed (depicted in Figure 4).

A. High-Level Synthesis Filter Template

Each FPGA kernel is designed to implement the dataflow
execution flow that is depicted in Figure 5. Every filter’s design
consists of three distinct sub-units (read, convolve, write) that
pipeline the memory read, memory write and the convolution
computations.

• read: The read module performs memory read transac-
tions through the interface port and store the input’s signal
values in a First-In-First-Out (FIFO) stream. The FIFO
stream has a depth of two and buffers the input elements,
allowing the convolve module to perform operations
continuously without stalling its operation.

• convolve: This sub-component performs the convolution
task and it starts it’s operation when the first W input

W: filter’s size of the window

Fig. 5. Designed Dataflow Mechanism

values have been stored in the FPGA’s BRAMs. The
convolution is performed in pipelined loops with each
loop executing W multiplications between the input signal
and the filter’s coefficients in parallel. A shifting mech-
anism is utilized for accessing the next available input
data. Specifically, when all of the W input values that are
stored locally have been convolved, then the elements of
this array are shifted, and the first element of the FIFO
stream is moved in the last address of the local array.
This process is repeated until all the input data elements
have been moved in the local memory array and have
been processed. The output of each convolution is stored
in a FIFO stream that is connected to the write module.

• write: This module performs the memory write transac-
tions by writing the output data elements that are stored
in the FIFO stream, provided by the convolve unit, to the
global memory.

B. CUDA Filter Template

The GPU implementation isolates only the compute inten-
sive convolution filter in order to convert it to CUDA parallel
kernel. At first, the input and output matrices are allocated on
device memory through cudaMalloc() command, in order
to be transferred through PCI Express with cudaMemcpy()
command. After manipulating the required data, the kernel
grid is organized into 32-size thread-blocks while the total size
of threads that launch the kernel constitute the total input array
size. In this way, each kernel’s thread corresponds to each
input’s element in order to perform convolution with its sur-
rounding elements. Finally, the resulted matrix is transferred
from device to host memory through the cudaMemcpy()
operation.

IV. EXPERIMENTAL RESULTS

The proposed methodology was evaluated on a use case
scenario from the finance sector that performs market and
portfolio analysis. Specifically the scenario of accelerating on
FPGA and GPU a Savitzky-Golay filter with a polynomial
order of 3 and a window size of 11 for 10 different financial
assets was tested. Each financial asset is represented by a time
series composed of 20000 32-bit data points. Every data point
corresponds to the closing price of the specific stock for one
day of the year.

Fig. 6. Execution time speedup for Savitzky-Golay filter on Alveo U50 and
Nvidia T4

Device Setup: For the device setup we tested our evaluation
scenario on an Alveo U50 data center acceleration card and
on a Nvidia T4 GPU. Our baseline reference architecture was
an Intel Xeon Gold 5218R at 2.10 GHz.

Figure 6 depicts the execution time of the aforementioned
use case on different computing architectures. The evaluated
scenario has an execution latency of 11.4 ms on the Intel Xeon
processor, while the execution time of the same computational
kernel through the proposed designing flow, is decreased to
0.52 and 0.34 ms on the data center FPGA and GPU devices
respectively. Therefore, a speedup of x21.9 and x33.5 is
achieved when the pre-accelerated filter templates are used.
Additionally, during the execution of the proposed implemen-
tation, the power consumption is monitored. For the power
measurements of the CPU socket, the Intel PCM tool [13] is
used, while the nvidia-smi and the vitis_analyzer
tools are used for the case of GPU and FPGA respectively.
The recorded power consumed for the baseline CPU, the
FPGA and the GPU platform is presented in Figure 7. As
shown, the total power consumption of the baseline CPU
socket rises to 89 Watts (with idle consumption at 26 Watts)
and FPGA and GPU implementations to consume 9.5 and 26
Watts accordingly. Therefore, it is obvious that a latency-power
trade-off is disclosed between FPGA and GPU accelerated
Savitzky-Golay filters, with GPU to provide the most latency
efficient solution with x33.5 speedup and FPGA to provide the
most power efficient solution with 89% reduction compared
with the baseline CPU implementation.

V. CONCLUSION

In this work, a tool for creating different accelerated
Savitzky-Golay filters for GPUs and FPGAs is proposed. The
mechanism automatically applies the user-defined polynomial
order and window size of the filter to a set of pre-accelerated
templates. These templates are evaluated using the Savitzky-
Golay parameters of a real use case, targeting a Nvidia T4
GPU and an Alveo U50 FPGA. It is shown that a speedup

Fig. 7. Power consumption for Savitzky-Golay filter on Alveo U50 and Nvidia
T4

of x33.5 and x21.9 is achieved for the Nvidia T4 GPU
and the Alveo U50 FPGA compared with the CPU baseline,
with a power consumption of 26 and 9.5 Watts respectively.
Finally, a latency-power trade-off is disclosed between the both
accelerators with GPU to provide the most latency efficient
solution with x33.5 speedup and FPGA to provide the most
power efficient solution with 89% reduction compared with
the baseline CPU implementation.

ACKNOWLEDGMENT

This work has been supported by the E.C. funded program
SERRANO under H2020 Grant Agreement No: 101017168

REFERENCES

[1] Danopoulos, D., Kachris, C., Soudris, D.: Fpga acceleration of approxi-
mate knn indexing on high- dimensional vectors. In: 2019 14th Interna-
tional Symposium on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC). pp. 59–65 (2019).

[2] De Schryver, C.: Design methodologies for hardware accelerated het-
erogeneous computing systems. PhD thesis, University of Kaiserslautern
(2014)

[3] Weston, S., Spooner, J., Marin, J.-T., Pell, O., Mencer, O.: FPGAs speed
the computation of complex credit derivatives. Xcell J. 74, 18–25 (2011)

[4] Górriz, J. M., Carlos Garcı́a Puntonet, and Moisés Salmerón. ”Pre-
processing time series with ICA and savitzky-golay filtering.” Neural
Networks and Computational Intelligence. 2004

[5] Agarwal, Shivangi, et al. ”Performance evaluation and implementation of
FPGA based SGSF in smart diagnostic applications.” Journal of medical
systems 40.3 (2016): 1-15.

[6] Belloch, Jose A., et al. ”Real-time massive convolution for audio
applications on GPU.” The Journal of Supercomputing 58.3 (2011): 449-
457.

[7] Orfanidis, S. J., Introduction to signal processing. Prentice Hall, Engle-
wood Cliffs, 1996

[8] Kennedy, Hugh L. ”Improving the frequency response of Savitzky-Golay
filters via colored-noise models.” Digital Signal Processing 102 (2020):
102743.

[9] “Xilinx - Adaptable. Intelligent.” Xilinx.com, 2019, www.xilinx.com/.
[10] “Vitis Software Platform.” Xilinx, www.xilinx.com/products/design-

tools/vitis/vitis-platform.html. Accessed 10 Feb. 2022.
[11] Cheng, John, Max Grossman, and Ty McKercher. Professional CUDA

c programming. John Wiley & Sons, 2014.
[12] Munshi, Aaftab, et al. OpenCL programming guide. Pearson Education,

2011.
[13] https://www.intel.com/content/www/us/en/developer/articles/technical/

performance-counter-monitor.html. Accessed 16 Aug. 2012.

