
Design Understanding: Identifying Instruction
Pipelines in Hardware Designs

Lutz Schammer, Jan Runge, Paula Klimach, Goerschwin Fey
Institute of Embedded Systems, Hamburg University of Technology, 21073 Hamburg, Germany

{lutz.schammer,paula.klimach,goerschwin.fey}@tuhh.de

Abstract—Automated tools help a designer to reduce the time
and the effort required to understand details of an unfamiliar
design. In this paper we show an approach using static analysis
to identify instruction pipelines, which are key structures in
processor hardware designs. We present two algorithms which
identify pipeline structures. The first algorithm is based on a
structural analysis using a graph representation of the design,
while the second algorithm uses terms and phrases for pipelines
as they are found in literature for a name-matching approach.
The two algorithms successfully identified pipelines for e.g. Y86
and edge processor designs.

Index Terms—Design Understanding, Static Analysis, Control-
Flow, Verilog

I. INTRODUCTION

Designing hardware often requires understanding unfamiliar
designs which costs time and effort. Insufficiently documented
designs increase the cost even further. Design understanding
is the process of extracting information from an unfamiliar
design which helps understanding the behaviour of the design
or identifying certain structures in the design. Automated
tools help speedup design understanding, by automatically
extracting information from a design and generating docu-
mentation or semantic annotations as shown in Figure 1.

Fig. 1. Tool supported Design
Understanding.

Design understanding is further
explored in [1] and related prob-
lems are defined. Different ap-
proaches using both static anal-
ysis as well as dynamic analysis
already exist to extract informa-
tion from hardware designs. One
such approach for design under-
standing is automatic extraction
of information about a design, e.g. information about some
distinctive structures of the design and in which lines of the
source code parts of these structures were found.
Our vision is to provide tools for design understanding that
go far beyond such simple extractions but rather provide
a comprehensive set of knowledge for a design. One way
to approach this are automated semantic annotations about
architectural structures. As a first step we consider pipelines
in processor designs.
This paper presents two algorithms that support design un-
derstanding by identifying instruction pipeline structures in

This work has been funded in part by DFG grant FE 797/15-1.

Verilog hardware designs. While both algorithms are based on
static analysis of the target designs, the first algorithm uses a
structural approach analyzing control-flow graphs to recognize
structures resembling instruction pipelines.
For comparing with a simple baseline, the second algorithm
uses name-based pattern matching that identifies elements
in the graphic representation that indicate the presence of
parts of a pipeline structure. Both approaches provide a back
annotation for the source code to identify pipelines found by
the algorithms. This provides a starting point to the user for
further investigation.
Our contributions include two algorithms which identify struc-
tures that are candidates for instruction pipelines and return
information to the user representing where the structures can
be found in the design.
The structure of this paper is as follows. Related work is
presented in the next section. Section III presents the basic
notations for the algorithms developed in this work. Section IV
presents the first algorithm based on the structural approach
while Section V presents the name-matching approach. Sec-
tion VI presents experimental results for both algorithms for
pipeline detection in different processor designs. The last
section draws a conclusion of the gained results.

II. RELATED WORK

Previous studies describe dynamic and static analysis of
hardware designs, which aim to automatically extract infor-
mation from a design for different purposes, e.g., testing,
verification, or design understanding.
In [2], a method for automatic generation of design properties
is shown in which dynamic analysis of simulation traces
is combined with constraints generated from the Register
Transfer Level of the design by static analysis. Similarly the
methodology called GoldMine [3], [4], uses the results of
static analysis of register-transfer-level designs to guide a data
mining process to find assertions for which the design can be
tested.
A tool directly connected to Verilog is Pyverilog [5], written in
Python and capable of analysing Verilog designs for control-
flow and data-flow. The paper shows how a data-flow graph
can be created from an abstract-syntax-tree created from a
design and how the Control-Flow graph can be created based
on the data flow graph. The work in [6] provides a syntax
analyser tool, that utilizes Control-Flow and data flow to allow



Fig. 2. Sketch of an example pipeline, each stage consists of a shift register
for the instruction and the funcitonality of the stage.

for abstraction or reduction of a given Verilog design.
Many of the prior works have a focus on design verification
using the obtained information for debugging or to infer design
properties/assertions for testing purposes. Our focus lies in a
different area by using the information obtained through static
analysis to help the user to better understand the design on a
behavioural level as well as on the implementation level.

III. BASIC NOTATIONS

A. Netlist

A netlist defines a design by describing the modules of a
design. A netlist is defined as

NL = {M1,MN}

where M, are all contained modules. Each module M of the
netlist consists of ports P, cells C and nets N.

M = {P,C,N}

Ports are the input and the output connection of a module,
while the cells are gates or module instantiations of the
hardware design. Cells are connected by nets.

B. Control-Flow Analysis

a) Control-Flow Graph: A control-flow graph Gcf is
defined as

Gcf = (V,E)

with V and E being the nodes and edges of the graph. The
control-flow graph is created from the netlist where the nodes
V contain all cells which are relevant for the control-flow of
the design.

IV. STRUCTURAL INSTRUCTION PIPELINE DETECTION

A netlist for a hardware design is used to generate the
control-flow graph for a design. The graph and netlist are used
as the basis for the following algorithms to detect instruction
pipelines in a given design.

A. Instruction Pipelines

Pipelines parallelize certain steps in a process thereby
reducing the time required for a job. For processor pipelines
this allows work on multiple instructions to be performed
in parallel, e.g. while one instruction executes its arithmetic
operation, the next instruction executes a memory access
operation.
Figure 2 shows an example of processor pipeline construction.
Each stage, illustrated in Figure 1, consists of cells and
instruction registers. Cells implement the actual function of the
stage and results are stored in intermediate registers. Whereas
the instruction register stores the stage’s current instruction.

Algorithm 1 Detecting Pipelines in a Hardware Design
Require: flattened Netlist
Require: minimal number of FFs for a pipelineCandidate(pc),

minFF
1: function DETECTPIPELINECANDIDATES
2: createCFG(NL)
3: createFFsubgraph(clk, CFG)
4: pipelineCandidates ← ∅
5: for node ∈ FFsubgraph do
6: if node.isFlipFlopNode() then
7: CFG.find(node)
8: pc = createFFConstGraph(node)
9: FFsubgraph.removeUsedFlipflop(pc)

10: pipelineCandidates.addPipeLineCandidate(pc)
11: end if
12: end for
13: PipelineCanditates.removeSubGraphEntries()
14: for pc in pipelineCandidates do
15: pipelineCandidates.splitGraphIntoPaths(pc)
16: end for
17: pipelineCanditates.removePathsWithoutFF()
18: for pc in pipelineCadidates do
19: if minFF > ffsInPipelineCandidate(pc) then
20: pipelineCandidates.erase(pc)
21: end if
22: end for
23: return pipelineCandidates
24: end function

The instruction register is built as a shift register which carries
the instruction from one stage of the pipeline to the next. As
a result, the shift register is the component in the pipeline
that can be used as a starting point in the identification of
similar pipelines in an unfamiliar design. As discussed earlier,
the first algorithm uses a structural approach to recognize
pipelines. One structure used for pipeline identification in
hardware designs is the shift register and therefore there is
a limit to the type of pipeline that we are able to detect to the
type that utilize shift registers. The algorithm identifies the
part of a pipeline implementing the instruction registers.
As the algorithm only identifies part of the pipeline, user input
completes the identification of the pipeline from the pipeline
candidates. A pipeline candidate is a subgraph of the control-
flow graph, which consists of a series of flipflops and other
nodes which can suggest the presence of a pipeline in a design.
A minimum threshold of flipflops is used to represent the
number of stages in a detected pipeline.

B. Structural Instruction Pipeline Detection

The pseudo-code is given in Algorithm 1. In the initializa-
tion of the algorithm shown in line 2, the control-flow graph
is created. In line 3, a subgraph of the control-flow graph is
created containing only nodes connected to the clock signal.
In line 5, all nodes that have the clock signal as input are
traversed since each flip-flop in the pipeline is connected to
the clock. After assuring that the currently investigated node
represents a flip-flop, the corresponding node in the control-
flow graph is determined as shown in line 7. This node is used
as a starting point for the pipeline candidate detection. From
this node, a subgraph of the control-flow graph is created,



TABLE I
THIS TABLE SHOWS EXAMPLES FOR DIFFERENT PATTERNS THAT OCCUR

IN LITERATURE DESCRIBING INSTRUCTION PIPELINES.

Patterns Source
”Stage”, ”instruction fetch”, ”IF”, Principles of

”instruction decode”, ”ID”, Computer
”operand fetch”, ”OP”, ”execute” Hardware [7]
, ”E”, ”operand execute”, ”OE”,

”operand store”, ”OS”
”Stage”, ”fetch”, ”F”, ”decode”, Computer

”D”, ”read”, ”R”,”execute”, Architecture [8]
”E”, ”phase”, ”write”

”Stage”, ”Fetch”, ”Instruction”, Digital Design and
”Decode”, ”Execute”, ”Memory”, Computer Architecture [9]

”Writeback”,
”Stage”, ”Instruction Memory”, ”RF”, Fundamentals of Computer

”Data Memory”, ”Write-Back”, Architecture and Design [10]
”IF”, ”A”, ”DM”, ”WB”

”Stage”, ”Fetch”, ”Decode”, ”Execute”, Practical Introduction
”Write”, ”FET”, ”DEC”, ”PE”, ”WRI”, to Computer

”memory”, ”EXE”, ”MEM”, Architecture [11]
”IF”, ”ID”, ”EX”, ”MEM”, ”WB” Digitaltechnik - Eine

praxisnahe Einfuehrung [12]

holding all successors representing either constant cells or flip-
flops. In line 8, a subgraph of the control-flow graph is created
starting from the identified flipflop node. Finally, all flip-flops
that were used in this path are removed from the FFsubgraph
in line 9, since analysing them would result in subgraphs of
the graph that was just created. Finally, the created subgraph
is stored in a set of all found pipeline candidates. The first
part of the pipeline detection is completed with these last two
steps shown in lines 9 and 10.
In the second part, the currently stored subgraphs are traversed.
If one graph is a subgraph of another one, the subgraph
is removed from the set of pipeline candidates, in line 13.
The remaining subgraphs are split into paths using depth first
search to match the requirement of being an actual pipeline
candidate. Afterwards, all paths that were created but do not
contain any flip-flops are removed from the set of candidates.
This is shown in lines 14 to 17. Finally, all candidates with less
than the required minimal number of flip-flops are removed
in lines 18 to 22, resulting in the return of the set of pipeline
candidates as the final product of the algorithm in line 23.

V. NAME-BASED PIPELINE IDENTIFICATION

The algorithm traverses the nodes of the netlist and com-
pares the names of each node with the pattern-set shown
in Table I. Additionally, for every match found an accuracy
value is calculated. The described algorithm is sketched in the
following, split into two parts. The first part is the pattern
matching algorithm itself and the second one is the design
traversal.
The pattern matching algorithm, presented in Algorithm 2,
has three inputs in line 3, the pattern-set shown in Table I,
the sequence inName in that a pattern should be found and
an optional feedback value outAcc that allows to return the
determined accuracy on demand. Since the pattern-set contains
only terms in lower-case, the sequence inName is converted
to lower-case in line 2, to ensure a possible match is detected
despite differences in capitalisation. The return values and an

Algorithm 2 Pattern Matching Algorithm
1: function FINDPATTERNMATCH(inPatternSet, inName, outAcc)
2: tempName = toLowerCase(inName)
3: foundIndex = 0
4: accuracy = 0
5: index = 0
6: while index < inPatternSet.size() do
7: pattern = inPatternSet.at(index)
8: if inName.contains(pattern) then
9: newAcc = pattern.length()/inName.length()

10: if newAcc > accuracy then
11: accuracy = newAcc
12: foundIndex = index
13: end if
14: end if
15: index++
16: end while
17: if outAcc then
18: outAcc = accuracy
19: end if
20: return foundIndex
21: end function

index to traverse the pattern-set are initialised, as given in lines
3 to 5. Afterwards a loop iterates through all the patterns.
In this loop, line 8 checks if inName contains the current
pattern. If so, the accuracy of the found match is calculated
by dividing the pattern length by the length of inName, shown
in line 9. If the newly calculated accuracy is greater than the
currently stored one, the stored one is replaced by the new one
in line 10 and 11. The index of the pattern is stored in line
12. After the whole pattern-set was traversed, the match with
the highest accuracy has been found. If the optional parameter
for returning the accuracy is used, the accuracy of the found
match is passed to this parameter as shown in lines 17 to 19.
Finally, the index of the pattern with the highest accuracy is
returned in line 20.
The second algorithm shown in Algorithm 3, the design must

be processed. Additionally, to traverse the elements inside the
design, the accuracy determined by the matching algorithm
is used to filter the results to produce a certain quality. The
algorithm takes as its inputs the netlist of the design that should
be investigated, the pattern-set and the minimal accuracy that
a match must have. All modules in the netlist are traversed.
For each module, first the nets and cells are traversed. This
is done in an identical way, the following description holds
for lines 8 to 15 and lines 16 to 23. First, a variable accuracy
is defined in line 4, used as the optional parameter of the
findPatternMatch function to return the accuracy of the found
pattern. The function findPatternMatch is called in line 5,
given the pattern-set and the name of the element that is
currently checked. If a match and by that an index is found,
the accuracy is compared to the minimal accuracy. Depending
whether the accuracy is greater or equal to the minimal value,
the currently investigated element is annotated with the found
match and that the element might be a pipeline part.

VI. EXPERIMENTS

This section discusses the results for different designs. The
framework is executed on a laptop running Windows 10, using



Algorithm 3 Traversing Designs and Modules for Pattern
Matching

1: function ANNOTATEMODULEELEMENTS(netlist, inPatternSet,
inMinAcc)

2: for (P,C,N) = M ∈ NL do
3: for n ∈ N do
4: accuracy = 0
5: if -1 ̸= (index = FINDPATTERNMATCH()) then
6: if accuracy ≥ inMinAcc then
7: net.annotate()
8: end if
9: end if

10: end for
11: for c ∈ C do
12: accuracy ← 0
13: if -1 ̸= (index = FINDPATTERNMATCH()) then
14: if accuracy ≥ inMinAcc then
15: cell.annotate()
16: end if
17: end if
18: end for
19: end for
20: end function

TABLE II
SHOWS THE NUMBER OF NODES IN THE CONTROL-FLOW GRAPH, NUMBER
OF FLIPFLOP-NODES AND RUNTIME OF THE ALGORITHM ON EACH DESIGN

Design CFG nodes FF-nodes Runtime(s)
Y86 369 33 0.007
Edge 2024 132 64
Ibex(Risc-V) 5337 78 47

an Intel Core i7-9750H processor with 2.6 GHz and 16 GB
RAM. The algorithms are applied three times to each design
to average the runtime.
The three different processor designs that are analysed are
based on different Instruction Set Architectures (ISAs). The
first processor is a Y86-processor [12] extended with a
pipeline, the second is an Edge processor [13] based on the
MIPS architecture and the third one is the Ibex processor [14]
based on the RISC-V ISA.
Table II shows the runtimes for the structural instruction
pipeline detection. The table includes the number of nodes in
the CFG, the number of flipflop nodes found and the runtime
the algorithm needed for each design.

Table III shows how many cell and signal names were
searched by the simple algorithm based on pattern matching
for each of the three test designs together with the needed
runtime.

A. Y86

Table V shows the number of pipeline candidates found
by the structural analysis algorithm for the Y86 design for
possible pipelines with 2, 5 and 6 stages. The pipeline candi-
dates are further processed to identify the pipeline candidate
which most likely corresponds to the pipeline. Of the three
used designs the pipeline candidates that were identified for the
basic Y86 design are analysed in more detail as an example.
From the overall 36 pipeline candidates, 32 have a very similar
structure. This structure is visualized in Figure 3, where these
32 pipeline candidates are combined to a graph structure again.

TABLE III
SHOWS THE NUMBER OF CELL AND SIGNAL NAMES SEARCHED BY THE

ALGORITHM

Design cells signals Runtime(s)
Y86 382 745 0.006
Edge 1947 2628 2
Ibex(Risc-V) 5757 6947 4

TABLE IV
MOST PROMISING RESULTS OF PATTERN MATCHING ANALYSIS FOR THE
Y86 DESIGN. SHOWN ARE THE SIGNAL NAMES, THE MATCHIN PATTERN

AND THE ACCURACY.

Signal IR IF IR DEC IR EXE IR MEM IR WB
Pattern if dec exe mem wb
Accuracy 40% 50% 50% 50% 40%

24 of the five-staged and all six-staged pipeline candidates start
with the same two flipflops followed by the same multiplexer.
This multiplexer is followed by three further multiplexers and
a single flipflop which all differ throughout the candidates. The
pipeline candidates consist of different numbers of flipflops
and multiplexers. Only the number of flipflops is important
to determine how many stages a pipeline might have. In
Figure 3, this is shown by all the paths leaving the node
MUX 0 and ending in MUX 4 and MUX 10. The differing
flipflops are shown in one of the two multiplexers directly
before the path ends. From the node MUX 4 on, the six-
staged pipeline candidates contain the same two multiplexers
followed by the same three flipflops shown as the very left
path starting with MUX 5 and ending in DFF 10. For the five-
staged pipeline candidates the two multiplexers are followed
by one of three paths, each containing two multiplexers and
two flipflops, which are different depending on the path. The
five-staged pipeline candidates are shown in Figure 3 by the
three paths next to the path of the six-staged candidates. One
can see that the 32 candidates are the combination of each of
the eight paths from the node MUX 0 to the nodes MUX 4 or
MUX 10 and the four paths in which the graph ends. Using
the netlist of this design, one can see that the second flipflop
on all the paths is resettable, while the first one is not. The
third flipflop on each path is resettable as well, but the fourth
again is not. The inconsistency of the flipflops throughout the
paths disqualifies all of them to be a pipeline structure since
either a complete pipeline is resettable or it is not.
As yet unconsidered are the three two-staged and one five-
staged pipeline candidate. From the netlist used for the anal-
ysis, it is observed that these two candidates are connecting a
32-bit D-flipflop to a 1-bit D-flipflop. This disregards them
as possible pipelines since then only two bits of a 32-
bit instruction would be forwarded to the next stage. The
remaining two-staged candidate and the five-staged pipeline
candidate represent basic shift registers, so both of them might
be the instruction registers of a pipeline.
For the Y86 design the algorithm based on the simple pattern
matching approach identified the signals IR IF, IR DEC,
IR EXE, IR MEM and IR WB among others as shown in
Table IV. Since the signal names in the netlist are taken from
the design, the signals can be searched in the design directly to



DFF_5

DFF_6

MUX_0

MUX_1 MUX_7 MUX_12 MUX_16 MUX_19 MUX_22 MUX_26 MUX_29

MUX_2

MUX_3

DFF_7

MUX_4 MUX_10

MUX_5 MUX_15 MUX_25

MUX_6

DFF_8

DFF_9

DFF_10

MUX_8

MUX_9

DFF_11

MUX_11

DFF_12

DFF_13

MUX_13

MUX_14

DFF_14

DFF_15

DFF_16

MUX_17

MUX_18

DFF_17

MUX_20

MUX_21

DFF_18

MUX_23

MUX_24

DFF_19

DFF_20

DFF_21

MUX_27

MUX_28

DFF_22

MUX_30

MUX_31

DFF_23

Fig. 3. Simplified version of the graph that is obtained when combining all
pipeline candidates found for the Y86 design with a common structure.

TABLE V
NUMBERS OF PIPELINE CANDIDATES WITH THE SAME NUMBER OF STAGES

FOR THE Y86 DESIGN FOUND BY THE STRUCTURAL APPROACH.

Stages 2 5 6
Pipeline candidates 3 25 8

identify which structures these signals are a part of. Searching
the desing indicates that the signals found are parts of a five-
staged pipeline. Of the 230 signals identified the user needs
to identify which signals are possibly part of the pipeline and
can provide further information.
Both algorithms provide sufficient information to identify the
pipeline in the Y86 design.

B. Edge

Table VI shows the number of pipeline candidates found
by the structural analysis algorithm for the Edge design for
possible pipelines with 2 to 9 stages. The identified pipeline
candidates for the Edge design are processed to identify the
most likely candidate to represent a pipeline. As shown in
Table VI, more than 700 candidates were found. Again, it is
noticeable that especially the large pipeline candidates have
large common subgraphs. All candidates with seven or more
stages start with one of three paths which end in the same
multiplexer. These three paths are checked first instead of
checking all 483 pipeline candidates with seven or more
stages. All three paths take a value from a register and pass
this value to a shift register containing three d-flipflops with
multiplexers in between. In all shift registers found, the first
d-flipflop is placed in the same module instance. The same
holds for the second and the third d-flipflop of each shift

TABLE VI
NUMBERS OF PIPELINE CANDIDATES WITH THE SAME NUMBER OF STAGES

FOR THE EDGE DESIGN FOUND BY THE STRUCTURAL APPROACH..

Stages 2 3 4 5 6 7 8 9
Pipeline candidates 7 15 36 137 67 99 192 192

TABLE VII
MOST PROMISING RESULTS OF PATTERN MATCHING ANALYSIS FOR THE

EDGE PROCESSOR DESIGN. SHOWN ARE THE CELL NAMES, THE
MATCHING PATTERN AND THE ACCURACY.

Cell IF ID REG ID EX REG EX MEM REG MEM WB REG
Pattern if id id ex ex mem mem wb
Accuracy 55.55% 55.55% 60% 60%

register, while the module instances differ. This indicates that
the pipeline stages are implemented in separate modules and
that the pipeline candidates found represent data paths in the
pipeline. To confirm this assumption, the remaining pipeline
candidates are searched for other paths through the modules
already found. Within the five- and six-staged candidates, more
shift registers are found that have their single d-flipflop in the
modules that were found before, strengthening the assumption
that these modules represent pipeline stages. Comparing the
modules found to the given design description and source
code shows that the structure found indeed is the pipeline of
the design. For example one of the found modules is called
IF ID REG and is instantiated in line 536 in file Edge core.v.
The associated module is in file if id pipereg.v. Since each
module is used to store the data for the next stage, the pipeline
has five stages for the four modules found.
The simple algorithm based pattern matching found four cells
in the Edge processor design shown in Table VII. Investigating
the netlist yields that all four cells are representing module
instantiations in the top-module of the design. Further, the
inputs and outputs of these module instantiations indicate that
an instruction is processed and that some outputs and inputs
between these module instantiations are connected and data is
propagated from one module to the next. These observations
hint towards all four module instantiations being a part of
a pipeline. Since the signals that the last stage could use
are defined by the MEM WB REG instance, a fifth module
instantiation with the name rf is found. Inspecting the modules
of the design belonging to the cells, shows that the identified
cells are part of a pipeline. The matches not considered up
to here often describe signals to or from the pipeline stages,
but they also contain random hits, especially in the lowest
accuracy range.
The pipeline in the Edge processor design is identified by both
approaches.

C. Ibex

The final design that is investigated is the Ibex processor.
Table IX shows the number of pipeline candidates found
by the structural analysis algorithm for the Ibex design for
possible pipelines with 2 to 5 stages. First, the longest pipeline
candidates are considered, containing four or five stages. These
pipeline candidates all contain identical subgraphs except one
single path. Investigating this single path further shows only



TABLE VIII
MOST PROMISING RESULTS OF PATTERN MATCHING ANALYSIS FOR THE

IBEX PROCESSOR DESIGN. SHOWN ARE THE CELL NAMES, THE MATCHING
PATTERN AND THE ACCURACY.

Cell if stage i id stage i ex block i load store wb stage i
unit i

Pattern if stage id stage ex store wb stage
Accuracy 80% 80% 20% 29.4% 80%

TABLE IX
NUMBERS OF PIPELINE CANDIDATES WITH THE SAME NUMBER OF STAGES

FOR THE IBEX DESIGN FOUND BY THE STRUCTURAL APPROACH..

Stages 2 3 4 5
Pipeline candidates 10 21 32 22

that it is passing data from a single nested module to a higher-
level module, not allowing precise guesses if it belongs to a
pipeline or not. Inspecting the other candidates shows that they
start with one of three paths. Further, all these 53 candidates
only use seven different flipflops. This small number can easily
be identified in the design using the netlist. Using the gained
knowledge to look into the design, a structure is found in line
448ff in file Ibex if stage.sv in which signals that seem to
represent instructions are propagated over multiple registers
every clock-cycle. Inspecting the remaining candidates with
two and three stages is not providing any new hints towards
identifying a pipeline. Because the architecture of this pipeline
differs from the architecture assumed by the algorithm the
pipeline was only partially identified. However the information
about the identified part is a valid hint for further investigation
of the design.
For the Ibex design the simple pattern-matching algorithm
identified cells as the most promising elements. The three
matches if stage i, id stage i and wb stage i, as shown in
Table VIII, already indicate that the cells with these names
represent modules which are pipeline stages. Without further
assumptions on the functionalities of the signals, investigating
the design shows that many signals that are outputs of the
if stage i instance are inputs to the id stage instance. Similar
connections are found between the id stage i cell and the
wb stage i cell together with connections from the id stage i
cell to the ex block i cell. Investigating the modules belonging
to these cells further, one can see that the input signals to the
module of the id stage i cell are not forwarded directly, but
instead they are interpreted and new signals are created, which
in turn are given to the next elements. This shows that the
pattern matching algorithm is capable of identifying different
pipeline structures which are constructed in a different way
than the instruction pipelines shown in IV-A. The simple
algorithm based on pattern matching successfully identified the
pipeline for the Ibex processor design. The structural analysis
algorithm identified only parts of the pipeline because the
pipeline architecture differs from the architecture assumed by
the algorithm.

VII. CONCLUSION

This work introduced two algorithms for identifying instruc-
tion pipelines in hardware designs in an effort to assist design

understanding. The first algorithm searches a graph represen-
tation of a design for subgraphs with specific elements. Since
shift registers were introduced as a possible implementation
for instruction pipelines, the algorithm searches for shift
registers, basic as well as extended ones, in the graph. The
resulting subgraphs are then given to the designer, who can
investigate the design parts to which the subgraphs belong. The
algorithm using a structural analysis approach identified the
pipelines in two of the designs. The pipeline in the third design
was only partially identified because the structural approach
is limited by its definition of the pipeline architecture.
The second algorithm uses a simple pattern-matching approach
and identified the pipelines in all tested designs. The simple
pattern matching algorithm is limited by the number of pat-
terns the algorithm can recognize.
For design understanding purposes both approaches are helpful
tools. The most helpful approach for design understanding is
likely to use a combination of both algorithms to maximize
the gained information from an unfamiliar design. These algo-
rithms focus on pipelines as an example but similar approaches
are applicable to other components of interest in unfamiliar
hardware designs.

REFERENCES

[1] S. Ray, I. G. Harris, G. Fey, and M. Soeken, “Multilevel design under-
standing: From specification to logic,” in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2016, pp. 1–6.

[2] E. El Mandouh and A. G. Wassal, “Automatic generation of hardware
design properties from simulation traces,” in IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2012, pp. 2317–2320.

[3] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “GoldMine: Automatic assertion generation using data mining and
static analysis,” in Design, Automation & Test in Europe Conference &
Exhibition, Piscataway, NJ, 2010, pp. 626–629.

[4] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining Hardware Assertions
With Guidance From Static Analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 6, pp.
952–965, 2013.

[5] T.-Y. Shinya, “Pyverilog: A Python-Based Hardware Design Processing
Toolkit for Verilog HDL.” Springer, Cham, 2015, pp. 451–460.

[6] M. Zaki and S. Tahar, “Syntax code analysis and generation for Verilog,”
in Canadian Conference on Electrical and Computer Engineering.
Toward a Caring and Humane Technology (Cat. No.03CH37436).
CCECE, 2003.

[7] A. Clements, Principles of computer hardware, 4th ed. Oxford: Oxford
Univ. Press, 2006.

[8] G. Blanchet and B. Dupouy, Computer Architecture, 1st ed., ser. Com-
puter engineering series. s.l.: Wiley-ISTE, 2013.

[9] D. M. Harris, Digital design and computer architecture: From Gates to
Processors, ser. Computer organization bundle, VHDL Bundle. San
Francisco, CA: Morgan Kaufmann Publishers, 2010.

[10] A. Bindal, Fundamentals of Computer Architecture and Design, 2nd ed.,
ser. Springer eBook Collection. Cham: Springer International Publish-
ing, 2019.

[11] D. Page, A practical introduction to computer architecture, ser. Texts in
computer science. Dordrecht and Heidelberg: Springer, 2009.

[12] A. Biere, D. Kroening, G. Weissenbacher, and C. Wintersteiger, Digital-
technik - eine praxisnahe Einführung. Berlin and Heidelberg: Springer,
2008.

[13] H. Almatary, “Edge Processor (MIPS),” 2014. [Online]. Available:
https://opencores.org/projects/edge;https://github.com/freecores/edge

[14] lowRisc, “Ibex Core,” 2021. [Online]. Available: https://github.com/
lowRISC/ibex


