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Abstract—Deep Learning has emerged as a powerful set of
computational methods achieving great results in a variety of
different tasks. Music signal processing, a field with rich com-
mercial applications, seems to benefit too from this data-driven
approach. In this paper a review of the state of the art Deep
Learning methods applied on music signal processing is provided.
A special focus is given in music information retrieval and music
generation. In addition, possible future research directions are
discussed.

Index Terms—Deep Learning, Music Signal Processing, Music
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I. INTRODUCTION

Deep Learning (DL), a sub-field of Machine Learning (ML),
has emerged as a powerful set of computational methods
achieving great results in a variety of different tasks, such as
Computer Vision (CV), Natural Language Processing (NLP),
Bio-informatics etc [1].

Recently, DL. methods have been widely used in the field of
audio signal processing (ASP) [2] and music signal processing
(MSP) [3] (Fig. 1), leading to many successful commercial
applications such as music recommendation systems (MRS)
[4]. Although the research activity around Music DL (MDL)
is growing rapidly, there are two main areas in which DL has
found greater success; Music Information Retrieval (MIR) and
Music Generation (MG).

MIR refers to the extraction of useful information from
music data. MIR is being used for a wide range of applications
such as classification, genre recognition, MRS, music source
separation and instrument recognition [5]. MG can be broadly
defined as the generation of music content. For this purpose,
valuable information is extracted using MIR techniques and
then different DL architectures are usually tested [6].
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Fig. 1. Number of papers referring to DL applications in music signal
processing

A. Related Work

In [2] the authors provide a review of (at that time) the state-
of-the-art DL techniques for ASP. DL for MG is surveyed in
[6], [7], while a tutorial on DL-based MIR is given in [5]. For
a discussion about DL in MRS systems the interested reader
may consult [4]. Finally, in [8] classical ML and DL methods
are reviewed for the task of music genre classification.

To the best of our knowledge this is the first time that both
MIR and MG are discussed in the DL framework, providing
in this way a more comprehensive overview of the current
research in this field.

The rest of this paper is structured as follows: The DL
methods applied on MIR are discussed in section II, while



section III consists of DL-based music generation. Future
directions are highlighted in section IV which also concludes
this work.

II. DL METHODS FOR MIR

The DL architectures that are most frequently employed for
MIR tasks are: i) Recurrent Neural Networks (RNNs), and
i) Convolutional Neural Networks (CNNs). In Table I, the
most common used DL architectures applied on MIR tasks
are summarized.

TABLE I
DL METHODS FOR MIR

DL Architectures Applications Research Paper
RNNs Feature extraction [11] - [14]
LSTMs Emotion prediction [10]
CNNs Feature extraction [16] - [25], [27]

Unsupervised Learning | Sound representations [28]

A. RNNs

RNNs are a family of neural networks for processing
sequential data [1]. A subset of RNNs which has been suc-
cessfully applied in many different areas including MIR is the
Long Short Term Memory networks (LSTM) [9].

Music is strongly connected with causing a variety of
feelings to listeners. In this context emotion prediction is a
valuable MIR task. In [10] the authors adopting the dimen-
sional valence-arousal (V-A) emotion model to represent the
dynamic emotion in music, managed to predict these values
using a Bidirectional Long Short-Term Memory (BLSTM)
model.

Music features’ classification, music tagging, genre recog-
nition and instrument recognition are examples of important
MIR tasks in MSP. In [11] - [14] different variants of RNN
architectures are employed in order to tackle such problems.

B. CNNs

CNNss are a class of DL models that are capable of process-
ing data with a known grid-like topology [1]. CNNs make use
of the convolution operation instead of matrix multiplication in
at least one of their layers [1]. CNNs are incredibly successful
in numerous tasks such as CV, NLP, time series forecasting
etc [15]. In the field of MSP and especially MIR, working
with time - frequency data, CNNs are frequently employed, in
order to extract local information from music data.

Exploiting the power of CNNs several papers report high
performance in the tasks of classification, music tagging,
genre recognition and instrument recognition, making also use
of spectograms [16] - [22]. However, several authors have
addressed some issues regarding the application of CNNs in
music data, thus improving their performance.

In [23] a CNN is applied to the problem of note onset
detection in audio recordings. The authors showed that if the
input of the CNN is a spectogram instead of enhanced auto-
correlation, one can obtain far better results. Another approach
is proposed in [24], where the entries of a CNN are eight music

features chosen along three main music dimensions: dynamics,
timbre and tonality. In this way, the filter dimensions are
interpretable in time and frequency and the training is more
efficient. Finally, a review of the various representations that
have been used, is provided in [25].

Attention mechanism [26] has gained much popularity re-
cently. In [27] attention augmented CNNs were trained to
recognize musical instruments, outperforming the classical
CNN architectures. This result indicates that attention may
be valuable for future research on MIR tasks.

C. Alternative approaches

Some other alternative approaches have been utilized
through the years in various MIR tasks, providing new ways
to extract useful information. The authors in [28] proposed
SoundNet to learn natural sound representations using large
amounts of unlabeled audio data. They proposed a student-
teacher training procedure, which transfers visual knowledge
from visual recognition models into the sound modality us-
ing unlabeled video as a bridge. In this way they achieved
significant performance improvements.

Overfitting is an always present issue in DL. In order to
avoid it, data augmentation may be employed. This approach
was followed in [29] for the task of the separation of music
into individual instrument tracks. In addition a combination of
a feed-forward neural network with a RNN performed better
than the individual models themselves.

III. DL-BASED MUSIC GENERATION

DL-based MG makes use of the results that are produced
by MIR methods. The most common approaches to MG are: 1)
RNNs - LSTMs, ii) Generative Adversarial Networks (GANs),
and iii) Transformers. In Table II, the most common used DL
architectures applied on MG tasks are summarized.

TABLE II
DL METHODS FOR MG

DL Architectures Applications Research Paper
RNNs Music generation [30] - [35]
LSTMs Style-specific music generation [36] - [42]
GANs Symbolic music generation [44] - [51]

Transformers Longer sequences generation [52] - [55]
A. RNNs

RNNs have been proved powerful for MIR tasks. Hence it
was straightforward to try to apply them for MG. Classical
RNN architectures have been tested on various MG tasks [30]
- [35].

In [33] a novel RNN model, DeepBach, is proposed aimed
at modeling polyphonic music and specifically hymn-like
pieces, while in [34] the model produces only drums’ sounds.
By generating one audio sample at a time, the authors of [35]
showed that their model’s musical output, in comparison with
other models, is preferred by human listeners.

Instead of using simple RNNs one can test LSTM archi-
tectures for MG tasks [36] - [42]. Chords play a crucial role



in music composition, so the task of chord generation is an
important one. In [36], [41] bi-directional LSTMs are used for
this problem, while in [42] CLSTMS, a combination of two
LSTM models, is proposed.

Musical styles are more or less distinguishable to human
listeners. However, the generation of style specific music is
a difficult computational task. The authors in [37] used a
variation of Biaxial LSTM, designing the DeepJ model for
style - specific MG.

B. GANs

Another popular approach in the field of MG is the use of
GANs. GANs were first introduced in [43]. The core idea
behind GANs is the existence of two antagonistic entities;
the generator and the discriminator. Given a training set of
real samples, the generator is trained to approximate the real
data distribution, while the discriminator tries to discriminate
between real and synthetic samples. GANs have found great
success in the image generation task and since they were
introduced many researchers have trained GAN models for
MG problems [44] - [51].

Symbolic music is music stored in a notation-based format,
which makes it easier for GANs to train on. Many different
GANs have been applied on this task [45], [46], [48]. Poly-
phonic music generation is discussed in [47], while DRUM-
GAN [50] produce synthetic drum sounds. The authors of
[49] demonstrated that GANSs are able to generate high-fidelity
and locally-coherent audio by modeling log magnitudes and
instantaneous frequencies with sufficient frequency resolution
in the spectral domain. Self-attention mechanism is combined
with GANSs in [51] in order to extract more temporal features
to generate multi-instruments music.

C. Transformers

Transformers were first introduced in [26] and since then
they have prevailed in the field of NLP. The core idea behind
transformers is the mechanism of self-attention, which refers
to the process of differentially weighting the significance
of each part of the input data. Transformers are designed
to handle sequential input data, but they do not necessarily
process the data in order. Variants of classical transformer
are designed in [52], [53] reducing the required memory, A
sparse factorization of the attention matrix was proposed in
[54], reducing the computation time and producing longer
sequences of data, including music. The authors of [54]
propose Pop Music Transformer to compose pop piano music,
achieving better rhythmic structure than other models.

A novel approach to music generation is given in [55]. The
raw audio data were first compressed into compressed codes
using Vector Quantization - Variational Autoencoders (VQ-
VAE), a variant of classical VAE which produces discrete data.
Then an auto-regressive transformer was utilized to produce
the musical outputs.

IV. FUTURE DIRECTIONS AND CONCLUSIONS

MDL is a very rich field, with a growing number of papers
being published every year. However, at this point there is

no dominant approach to follow for a specific task. Although
attention mechanisms seem to promise better results in both
MIR and MG, it is likely that standalone architectures will
not outperform the current ones. On the contrary, combined
architectures which leverage the individual characteristics of
each model are going to dominate the field in the near future.
A great concern is the computational cost of the DL models’
training. Reducing the required memory and producing longer
sequences of music data will result in many more commercial
applications, testing in this way the models to the real world’s
necessities.

In this work a comprehensive review of the work around
Music Deep Learning was provided. More specifically, we
focused on Music Information Retrieval and Music Gen-
eration. In these two areas DL methods seem to perform
better, resulting also in commercial applications. The different
Deep Learning models and a review of the state-of-the-art
architectures were thoroughly surveyed, while future research
directions were highlighted.
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