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Abstract—This work introduces an inertial measurement unit
(IMU) architecture which combines several three-axis accelerom-
eters and a three-axes gyroscope to provide an increased accu-
racy, low-noise measurement of the angular velocity. This is an
extension of gyroscope-free IMUs, which use only accelerometers
to measure the linear acceleration and translate it to angular
velocity by solving a system of differential equations. Existing ar-
chitectures cannot compensate for the accelerometers’ bias which
integrated is translated to a constant drift of angular velocity.
The proposed system exploits the basic operating principles of
the gyroscope-free IMUs and uses a three-axis gyroscope in a
closed-loop configuration to compensate for the effect of the
accelerometers’ bias. Focusing on a very popular and highly cited
IMU, the stability of the proposed system is proved analytically.
Simulation results indicate that the proposed architecture excels
in terms of noise performance; in the upper frequency range,
it presents up to 30dB less noise at its output compared to the
gyroscope.

Index Terms—Accelerometer, gyroscope, inertial measurement
unit, IMU, low-noise

I. INTRODUCTION

INERTIAL sensors (accelerometers and gyroscopes) are
nowadays embedded in several commercial devices such

as smartphones, activity trackers, alarm systems and others
while they are also used in many high-end, industrial, marine,
aerospace and military applications. The fast development
of Micro-Elctro-Mechanical (MEM) inertial sensors over the
past decades enabled the wider use of inertial sensors. Their
miniature size and extremely low cost make MEM inertial sen-
sors the ideal choice for a plethora of applications. However,
their large error characteristics and measurement noise [1]
forbid their use in applications where measurement accuracy
is important.

The measurement errors sourcing from manufacturing im-
perfections are (in their greatest part) static and there are
several calibration techniques that can effectively compensate
for them [2], [3].

The non-deterministic measurement noise on the other hand
is a more complicated problem which is most commonly dealt
with using extra sensors or estimation and filtering techniques
according to the specific application’s specifications and needs.
In inertial navigation for example, where the gyroscope’s noise
is causing a significant attitude error [4], it is common to
use a Kalman filter [1], [5] or use additional sensors, such

as a magnetometer [1], [6], to get a more accurate attitude
estimation.

In this work we introduce an inertial measurement unit
architecture which combines several three-axis accelerometers
and a single three-axis gyroscope, in a closed-loop config-
uration, to effectively reduce the measurement noise of the
angular velocity. The proposed architecture expands the basic
operating principles of the gyroscope-free inertial measure-
ment systems which use the measurements of several single-
axis accelerometers alone to derive both the acceleration and
the angular velocity. It uses several three-axis accelerometers,
placed on a rigid object, in combination with a single three-
axis gyroscope to alleviate the drift problems of the gyroscope-
free inertial measurement systems (see Section II). The pro-
posed architecture excels in terms of noise performance as, in
the upper frequency range, it presents up to 30dB less noise
at its output compared to the gyroscope.

II. GYROSCOPE-FREE INERTIAL MEASUREMENT SYSTEMS

In this Section, the basic principle of operation of
gyroscope-free inertial measurement systems is introduced.
Then, a popular and highly cited architecture is presented and
its performance limitations are highlighted.

A. Principle of Operation

Consider N single-axis accelerometers, placed arbitrary
positions, ri, i = 1, 2, . . . , N on a rigid body and denote their
sensitivity axes and measurements as η̂i and fi, respectively.
Following [7], we write the following system of equations for
deriving the specific force (f ) and the angular velocity (ω)

F = Jx+ P (1)

where

x =

[
ω̇
f

]
, J =

[
JT

1 JT
2

]
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...
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the auxiliary variables J1 and J2 are

J1 =
[
(r1 × η̂1) (r2 × η̂2) . . . (rN × η̂N )

]
J2 =

[
η̂1 η̂2 . . . η̂N

] (3)

and Ω is the cross-product matrix of the vector ω ,[
ωx ωy ωz

]T
Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (4)

Given an adequate number of properly placed (single-axis)
accelerometers, one can solve (1) in a least squares sense and
derive x as

x =
(
JTJ

)−1
JT (F − P ) (5)

Further defining J̄ =
(
JTJ

)−1
JT , (5) is written in a compact

form as
x = J̄F − J̄P (6)

and the solution is only valid if JTJ is non-singular.
In this work, we focus on the solution of the system of

differential equations for deriving the angular velocity, ω.
Denoting the ith row of J̄ as J̄i, we write

ω̇ = ĴF − ĴP (7)

where
Ĵ =

[
J̄T

1 J̄T
2 J̄T

3

]T
(8)

B. Existing Art and Performance Limitations

Several gyroscope-free inertial measurement systems’ archi-
tectures have been proposed over the years. Many authors have
proposed architectures using six [7], nine [8]–[10], ten [11] or
twelve [12], [13] (single-axis) accelerometers in an effort to
provide a feasible solution to (7) and moreover simplify the
original non-linear problem for estimating the angular velocity.

To demonstrate the performance limitations of the existing
approaches using multiple accelerometers in open-loop config-
uration, we consider the most popular one, the cube-type IMU
proposed by J. Chen [7] and further studied by several other
authors [14]–[19]. Although we focus on only one architecture,
our results can easily expanded to all existing architectures
which use specific geometries for the sensors’ placement in
order to reduce the non-linear system of differential equations
to a linear one.

The authors of [7] use just six single-axis accelerometers
placed on the faces of a cube as shown in Figure 1. By doing
so, the non-linear terms of (7) are eliminated and the derivative
of the angular velocity is derived as a linear combination of
the six accelerometers’ measurements as follows

ω̇ =
1

2l2
J1F (9)

While [7] provide a very simple and computationally light
solution to the original non-linear problem, the analysis is
limited to the case of ideal accelerometers and neglects the
effects of noise, bias and other imperfections of a real-world
accelerometer. Since the bias is the largest contributor in the
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Fig. 1: Gyroscope-free inertial measurement system proposed
in [7]. Six single-axis accelerometers are placed on the faces
of a cube. Their sensitivity axes are denoted by η̂1, η̂2, . . . , η̂6.

accelerometer’s measurement error [2], we will examine the
effect of a small additive bias, δF on the accelerometer’s
measurements. In this case, (9) becomes

˙̃ω =
1

2l2
J1(F + δF ) (10)

where δF is the 6×1 vectors representing the accelerometers’
bias. Subtracting (9) from (10) we get the evolution of the
system’s output error in time

˙δω , ω̇ − ˙̃ω =
1

2l2
J1δF (11)

As seen in (11), the output error of the cube-type IMU
accumulates over time meaning that even a very small offset in
the accelerometers’ measurements causes a cumulative angular
velocity error. This is rather important as even if the static
sensors’ offset is removed by a calibration procedure, a small
offset drift is expected over time, especially in the case of
low-cost sensors.

III. THE PROPOSED SYSTEM

In this Section, the proposed inertial measurement system
is introduced and analyzed in detail. The stability of the
proposed system under the effects of the accelerometers’ and
gyroscope’s biases is investigated. Simulations demonstrate the
improved noise performance of the proposed system compared
to a gyroscope of the same grade.

A. System Analysis

To alleviate the performance limitations of existing archi-
tectures, presented in Section II-B, the proposed system uses a
three-axis gyroscope, placed at the center of the cube (point O
in Figure 1). The top-level architecture of the proposed system
is shown in Figure 2a and its block diagram representation is
shown in Figure 2b.

Intuitively, the feedback loop that is introduced forces the
output of the system to be equal to the one of the gyroscope at
lower frequencies, before the low pass filter’s cutoff frequency.
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(b) Block diagram representation of the proposed system.

Fig. 2: Top level architecture (a) and block diagram represen-
tation (b) of the proposed system.

At higher frequencies, the feedback signal is attenuated and
the systems output is dominated by the accelerometers’ mea-
surements.

Before continuing with the analysis of the system and since
both the inputs (F and ωg) and the output (ω) of the system are
vectors, it is useful to define the following diagonal matrices
related to the modeling of the feedback loop.

G = diag(
[
g g g

]
)

P = diag(
[
p p p

]
)

Ps = diag(
[ p
s+p

p
s+p

p
s+p

]
)

(12)

Assume that the input measurements of both the accelerometer
(F in Figure 2b) and the gyroscope (ωg in Figure 2b) are not
ideal and it is

F = Fi + δF and ωg = ωgi + δωg (13)

where Fi ∈ R6 and ωgi ∈ R3 , ω are the ideal measurements
of the the accelerometers and the gyroscope respectively and
δF ∈ R6 and δωg ∈ R3 represent the measurement error of
the two sensors. Using this assumption and following the block
diagram of Figure 2b, we write

˙̃ω = J̄1(Fi + δF )−Gωf (14)

where
J̄1 =

1

2l2
J1. (15)

Subtracting (9) from (14), we get the evolution of the system’s
output error in time

˙δω = J̄1δF −Gωf (16)

Following Figure 2b, the feedback signal is written as

ωf = Ps(ω̃ − ωgi − δωg)

= Ps(δω − δωg)
(17)

and its time derivative is derived as

ω̇f = −P ωf + P (δω − δωg) (18)

Using (16) and (18), we write the following state-space system
representation[

˙δω
ω̇f

]
︸ ︷︷ ︸

ẋ

=
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03×3 −G
P −P

]
︸ ︷︷ ︸

A

[
δω
ωf

]
︸ ︷︷ ︸

x

+

[
J̄1 03×3

03×6 −P

]
︸ ︷︷ ︸

B

[
δF
δωg

]
︸ ︷︷ ︸

u

(19)

The characteristic polynomial of A is

pA(λ) = (λ2 + pλ+ gp)3 (20)

and its roots (which are the eigenvalues of A) are always
negative for positive values of g and p. Thus A is always
Hurwitz and the system of (19) is BIBO stable. This is
an important result as it indicates that the output error of
the proposed system, δω, is bounded for bounded inputs of
the accelerometers’ and the gyroscope’s biases, δF and δωg

respectively.
To quantify the effect of the accelerometers’ and the gy-

roscope’s biases on the system’s output error, we assume a
small constant bias vector f̄ ∈ R6 for the accelerometers and
a small constant bias vector ω̄ ∈ R3 for the gyroscope. From
(19) we get

x(t) = eAtx(0) +

∫ t

0

eA(t−s)B

[
f̄
ω̄

]
ds

= eAtx(0) + (eAt − I6)A−1B

[
f̄
ω̄

] (21)

where I6 is the 6×6 identity matrix. The steady state response
of (19) is derived as

lim
t→+∞

x(t) = −A−1B

[
f̄
ω̄

]
=

[
J̄1f̄
g + ω̄

f̄
g

] (22)

Using the triangle inequality and (22), we get the worst case
scenario for the steady state value of δω which is

‖δω‖ ≤
∥∥∥∥ J̄1f̄

g

∥∥∥∥+ ‖ω̄‖ (23)

B. Noise Performance

To evaluate the noise performance of the proposed archi-
tecture, we performed simulations in MATLAB. More specifi-
cally, we excited both the accelerometers’ and the gyroscope’s
inputs of the system of Figure 2b with band-limited white
noise the characteristics of which were chosen to match the
ones of a popular IMU in chip form [20]. The feedback’s gain
was set to g = 20 while the cut-off frequency of the low-pass
filter was set to p = 2π0.2 rad (0.2 Hz).

The power spectral density (PSD) of the system’s output
is presented in Figure 3 and compared to the PSD of the
gyroscope’s noise for two different values of the parameter
l in Figure 1 which determines the distance between the
accelerometers. As seen in in Figure 3, while the distance
between the accelerometers gets longer, the output noise of the
proposed system gets significantly lower in the higher frequen-
cies (up to 30dB lower than the one of the gyroscope) where



(a) l = 0.5m

(b) l = 2m

Fig. 3: The PSD of the proposed system’s output noise (X-
axis) compared to the PSD of the gyroscope’s output noise
(X-axis) for l = 0.5m (a) and l = 2m (b).

the output is dominated by the accelerometers’ measurements.

IV. CONCLUSION

In this work we introduced a new IMU architecture which
expands a big class of existing systems and make them
robust for use in real-world conditions. We demonstrated how
existing works cannot be used with real sensors’ data as
they cannot compensate for the accelerometers’ bias. Then,
we analytically proved the ability of the proposed system
to compensate for the accelerometers’ bias. Furthermore we
compared the output noise of the proposed system to the one
of a gyroscope of the same grade. We demonstrated that when
the accelerometers are spread over a great distance, the output
noise of the proposed system is up to 30dB lower than the
one of the gyroscope.
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