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Abstract— The most widely-used model of the excitation and 

propagation of impulse (action potential) in nerve membranes is 

the Hodgkin-Huxley system. In this paper we consider its 

simplification - a coupled FitzHugh Nagumo model. We shall 

study its dynamics from the point of view of local activity theory 

and we shall define the edge of chaos region in which complex 

behavior appears. Simulations show that oscillatory patterns, 

chaotic patterns, or divergent patterns may emerge if the 

selected cell parameters are located in locally-active domains 

but near the edge of chaos. 
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I. INTRODUCTION  

Information processing in the brain takes place in a 

dense network of neurons connected through synapses. The 

collaborative work between these two components (Synapses 

and Neurons) allows basic brain functions such as learning 

and memorization. An efficient emulation of these 

computational concepts is possible only by overcoming the 

so called von Neumann bottleneck which limits the 

information processing capability of conventional systems. 

To this end, mimicking the neuronal architectures with 

silicon-based circuits, on which neuromorphic engineering is 

based, is accompanied by the development of new devices 

with neuromorphic functionalities. Continued interest in bio-

inspired computing will likely make resistive switching 

technologies an important area of research during the next 

decade.     

For reaction-diffusion Cellular Nonlinear Networks 

(CNN) model, one can determine the domain of the cell 

parameters in order for the cells to be locally active, and thus 

potentially capable of exhibiting complexity. In the literature, 

the so called edge of chaos (EC) means a region in the 

parameter space of a dynamical system, where complex 

phenomena and information processing can emerge. The 

problem with such a definition is somewhat circular since it 

is defined in terms of phase transition regime which itself 

lacks a precise mathematical definition. In this paper we shall 

prove strong mathematical definition of the edge of chaos for 

bioinspired CNN model. 

  The Hodgkin–Huxley equations of the cardiac 

Purkinje fiber (CPF) model of morphogenesis in [4] describe 

the long-lasting action and pacemaker potentials of the 

Purkinje fiber of the heart for the first time. In the figure 

below we present the circuit implementation of Hodgkin 

Huxley model. 

 

 
Figure 1. Small signal Hodgkin Huxley’s model. 

 

     Hodgkin injected a DC-current of varying amplitude 

and discovered [4] that some systems could exhibit repetitive 

spiking with arbitrary low frequencies, while the others 

discharged in a narrow frequency band.  

    The original Hodgkin Huxley equations have the following 

form: 

 
𝑑𝑉

𝑑𝑡
= −

1

𝐶𝑚

((400 𝑚3ℎ + 0.14)(𝑉 − 𝑎)

+ 1.2 exp(−𝑉 − 90/50)
+ 0.015 exp((𝑉 + 90)/60) + 1.2 𝑛4)(𝑉
+ 𝑏) 

      
𝑑𝑚

𝑑𝑡
=  𝛼𝑚(𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚  

      
𝑑ℎ

𝑑𝑡
= 𝛼ℎ(𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ      

      
𝑑𝑛

𝑑𝑡
=  𝛼𝑛(𝑉)(1 − 𝑛) −  𝛽𝑛(𝑉)𝑛                           (1)         

 

where 𝑎 =  𝐸𝑁𝑎
= 40, 𝑏 =  −𝐸𝑘 = 100, 𝐶𝑚 = 12 and 𝐸𝑁𝑎

, 

𝐸𝑘 and 𝐶𝑚  are the sodium equilibrium potential, potassium 

equilibrium potential and membrane capacity, respectively. 

The other terms are defined as follows, 

 

  𝛼𝑚(𝑉) = 0.1(−𝑉 − 48)/(exp ((−𝑉 − 48)/15) − 1) 

  𝛽𝑚(𝑉) = 0.12(𝑉 + 8)/(exp ((𝑉 + 8)/5) − 1) 

 𝛼ℎ(𝑉) = 0.17(exp ((−𝑉 − 90)/20)) 

 𝛽ℎ(𝑉) = 1/(exp ((−𝑉 − 42)/10) + 1) 

 𝛼𝑛(𝑉) = 0.0001(−𝑉 − 50)/(exp ((−𝑉 − 50)/10) − 1) 

 𝛽𝑛(𝑉) = 0.002exp ((−𝑉 − 90)/80) 
 

where V is equal to the membrane potential E minus the 

resting potential 𝐸𝑟  ,(V is called the membrane potential). 

The trajectory of the original CPF equations is the same as 

the corresponding trajectory given in [4]. 

   The famous Hodgkin-Huxley neuron model [4] is 

the first mathematical model describing neural excitation 



transmission derived from the angle of physics and lays the 

basis of electrical neurophysiology. FitzHugh Nagumo 

equation [3], [5], which is a simplification of Hodgkin-

Huxley model, describes the generation and propagation of 

the nerve impulse along the giant axon of the squid. The 

FitzHugh Nagumo systems are of fundamental importance 

for understanding the qualitative nature of nerve impulse 

propagation. Shortly after the publication of Hodgkin and 

Huxley's equations (HH) for the squid giant axon [4], Richard 

FitzHugh [3] undertook an analysis of the mathematical 

properties of their equations. He used the new techniques of 

nonlinear mechanics. This was before digital computers 

became easily accessible. FitzHugh started by planning how 

to program an analogue computer which could be used to 

solve the Hodgkin-Huxley equations. With this computer he 

plotted solutions of the HH equations. The operation of the 

analogue computer required the skill of an electronic engineer 

as well as those of a mathematician. In this analogue 

computer, the variables in the HH equations are represented 

by voltages. Each variable was transformed into a voltage 

with a separate scale factor. These voltage signals were 

passed from one unit to another.  

 

 
Figure 2. FitzHugh computer. 

 

 

     In this paper we consider the simplification of Hodgkin 

Huxley model - coupled FitzHugh Nagumo system. In 

Section 2 we introduce the model, in Section 3 we study its 

dynamics and determine the edge of chaos region. Section 4 

deals with pattern formation in the model having application 

in cardiology and neurophysiology. 

 

II. GENERATION AND PROPAGATION OF THE NERVE IMPULSE 

      Nonlinear reaction-diffusion types of equations are 

widely used to describe phenomena in different fields, such 

as the biology-Fisher model [7], the Hodgkin-Huxley model 

[4] and its simplification––the FitzHugh Nagumo nerve 

conduction model [3,5], etc.      

      Based on the finite propagating speed in the signal 
transmission between the neurons, the coupled FitzHugh 

Nagumo neural system was proposed [3.5]. In this paper we 

shall consider the following system: 

 

||

�̇�1 = −𝑢1(𝑢1 − 1)(𝑢1 − 𝑎) − 𝑢2 + 𝑐𝑓(𝑢3)

�̇�2 = 𝑏(𝑢1 − 𝛾𝑢2)                                              

�̇�3 = −𝑢3(𝑢3 − 1)(𝑢3 − 𝑎) − 𝑢4 + 𝑐𝑓(𝑢1)

�̇�4 = 𝑏(𝑢3 − 𝛾𝑢4),                                              

                (2)                                      

where 𝑎 , 𝑏 , 𝛾  are positive constants, 𝑢1,2  represent 

transmission variables, and 𝑢3,4  are receiving variables; 𝑐 

measures the coupling strength, 𝑓 ∈ 𝐶3, 𝑓(0) = 0, 𝑓′(0) =
1 . We shall take 𝑓(𝑥) = tan−1 𝑥   in our investigation. 

System (2) is symmetric. Thus, considering the existence, 

spatio-temporal patterns and stability of its Hopf bifurcation 

periodic solutions is interesting. 

      In the seminal work by Rinzel and Ermentrout [6] it was 

shown that the difference in behavior is due to different 

bifurcation mechanisms of excitability. For dynamical 

systems in neuroscience, the type of bifurcation determines 

the computational properties of neurons. Neuronal models 

can be excitable for some values of parameters, and fire 

spikes periodically for other values. These two types of 

dynamics correspond to a stable equilibrium and a limited 

cycle attractor, respectively. When the parameters change, 

the models can exhibit a transition from one qualitative type 

of dynamics to another. Thus, the stability and bifurcation of 

neural network systems attract a lot of attention. At the same 

time, information transmission among neurons is carried out 

through synapses, and therefore the coupling among neurons 

is also achieved through synapses. Coupling among neurons 

can be classified into a gap junction and a chemical synapse 

coupling. Chaos and bifurcations can occur even in most 

simple systems, and moreover, coupled neurons could 

synchronize and exhibit collective behavior. 

      For a coupled Fitzhugh Nagumo system (2), we shall 

introduce CNN architecture. In our model each cell will be 

arranged on a two-dimensional square grid and will be 

connected to adjacent cells through coupling devices that 

mimic 2-D spatial diffusion and transmit the cell’s state to its 

neighboring cells, as in conventional CNN. Then the CNN 
model under consideration will be the following: 

|

|

𝑑𝑢𝑗
1

𝑑𝑡
= −𝑢𝑗

1(𝑢𝑗
1 − 1)(𝑢𝑗

1 − 𝑎) − 𝑢𝑗
2 + 𝑐𝑓(𝑢𝑗

3)

𝑑𝑢𝑗
2

𝑑𝑡
= 𝑏(𝑢𝑗

1 − 𝛾𝑢𝑗
2)                                               

𝑑𝑢𝑗
3

𝑑𝑡
= −𝑢𝑗

3(𝑢𝑗
3 − 1)(𝑢𝑗

3 − 𝑎) − 𝑢𝑗
4 + 𝑐𝑓(𝑢𝑗

1)

𝑑𝑢𝑗
4

𝑑𝑡
= 𝑏(𝑢𝑗

3 − 𝛾𝑢𝑗
4), 𝑗 = 1, … , 𝑛.                     

              (4)                                       

 The system (2) is transformed into a system of ordinary 
differential equations which is identified as the state equation 
of CNN with appropriate templates. We map the variables 𝑢1, 
𝑢2, 𝑢3 and 𝑢4 into  CNN layers such that the state voltage of 

a CNN cell at a grid point is 𝑢𝑗
𝑖 , 𝑖 = 1,2,3,4, 𝑛 = 𝑀. 𝑀; 𝑀 is 

number of the cells. The original sigmoid output circuit will 
be eliminated to further reduce the size of the processing 
elements as well as to improve the speed of computation. 
Therefore, the proposed architecture is more compact and 
versatile, as well as suitable for a VLSI implementation. The 
advantages of new proposed architecture are high density, 
non-volatility, and programmability of synaptic weights. 

III. EDGE OF CHAOS IN MEMRISTOR CNN MODEL (4) 

      Let us consider now the CNN model (4) of the coupled 

FitzHugh Nagumo neural system (2). First, we shall find the 

equilibrium points of (4). According to the theory of 

dynamical systems the equilibrium points �̂�𝑗
𝑖 of (4) are these 

for which: 

−𝑢𝑗
1(𝑢𝑗

1 − 1)(𝑢𝑗
1 − 𝑎) − 𝑢𝑗

2 + 𝑐 tan−1(𝑢𝑗
3) = 0  



𝑏(𝑢𝑗
1 − 𝛾𝑢𝑗

2 = 0  

−𝑢𝑗
3(𝑢𝑗

3 − 1)(𝑢𝑗
3 − 𝑎) − 𝑢𝑗

4 + 𝑐 tan−1(𝑢𝑗
1) = 0  

𝑏(𝑢𝑗
3 − 𝛾𝑢𝑗

4) = 0                                                       (5) 

      System (5) may have one, two, three or four real roots �̂�𝑗
1, 

�̂�𝑗
2, �̂�𝑗

3, �̂�𝑗
4, respectively. In general, these roots are functions 

of the cell parameters (𝑎, 𝑏, 𝑐, 𝛾). In other words, we have 

�̂�𝑗
𝑖 = �̂�𝑗

𝑖(𝑎, 𝑏, 𝑐, 𝛾), 𝑖 = 1,2,3,4. We shall consider only the 

equilibrium point 𝐸0 = (0,0,0,0). 

      We shall now calculate the Jacobian matrix of (5) about 

equilibrium point 𝐸0 . In our particular case the associate 

linear system in a sufficient small neighbourhood of the 

equilibrium point 𝐸0 can be given by 
𝑑𝑧

𝑑𝑡
= 𝐷𝐹(𝐸0)𝑧,  

𝐷𝐹(𝐸0) = 𝐽  is the Jacobian matrix of each of the 

equilibrium points and can be computed by: 

𝐽𝑝,𝑠 =
𝜕𝐹𝑝

𝜕𝑢𝑠
|𝑢=𝐸0

, 1 ≤ 𝑝, 𝑠 ≤ 𝑛.                                  (6) 

In our particular case the Jacobian matrix in the equilibrium 

point 𝐸0 is: 

𝐽 = [

−𝑎 − 1 𝑐 0
𝑏 − 𝑏𝛾 0 0

 𝑐 0 − 𝑎 − 1
0 0 𝑏 − 𝑏𝛾

]  

We shall calculate the trace 𝑇𝑟(𝐸0) = ∑ 𝜆𝑞
𝑁
𝑞=1 . In the 

equilibrium point 𝐸0 = (0,0,0,0) the trace is 𝑇𝑟(0,0,0,0) =
 −2(𝑎 + 𝑏𝛾). 

We shall identify the cell state variables 𝑢𝑗 as follows: 𝑢𝑗 

is associated with the node-to-datum voltage at node (𝑗) of a 

two-dimensional grid 𝐺 of linear resistors.  

Definition 1 

Stable and Locally Active Region 𝑆𝐿𝐴𝑅(𝐸)  at the 

equilibrium point 𝐸0 for the CNN model (4) is such that 𝑇𝑟 <
0. 

       In our particular case we have: 𝑇𝑟(0,0,0,0) =  −2(𝑎 +
𝑏𝛾) < 0  for all 𝑎, 𝑏, 𝑐, 𝛾  positive. Therefore in the 

equilibrium point 𝐸0 = (0,0,0,0) we have a stable and locally 

active region. 

      We shall identify the edge of chaos domain (EC) in the 

cell parameter space of the CNN model (4) by using the 

following definition [2]: 

 

Definition 2 

The CNN model (4) is said to be operating in the edge of 

chaos (EC) regime if and only if there is at least one 

equilibrium point 𝐸0, which belongs to 𝑆𝐿𝐴𝑅(𝐸) according 

to definition 1. 

The following theorem then holds: 

 

Theorem 1 

CNN model (4) of the coupled FitzHugh Nagumo system (2) 

is operating in the edge of chaos regime for all 𝑎, 𝑏, 𝑐 and 𝛾 

positive. For these parameter values there is at least one 

equilibrium point which belongs to 𝑆𝐿𝐴𝑅(𝐸). 

 

Proof: 

After solving (5) we find that one of the equilibrium 

points is 𝐸0 = (0,0,0,0). Then we check the conditions for 

local activity and stability given by Definition 1. The results 

show that the equilibrium point 𝐸0 = (0,0,0,0) satisfies these 

conditions for the parameter set 𝑎, 𝑏, 𝑐, 𝛾 > 0 . Therefore, 

there is at least one equilibrium point which is both locally 

active and stable. According to Definition 2, this means that 

the CNN model (4) is operating in the edge of chaos regime 

[2]. The theorem is proved. 

The simulations of the edge of chaos EC in which is 

operating the CNN model (4) are given in Fig. 3: 

 

 
 

 
 

Figure 3. Bifurcation diagram of (4). Edge of chaos (red), 

locally-active unstable domain (green), and locally-passive 

domain (blue). 

 

Remark 1.  In the edge of chaos region different patterns 

occur such as oscillatory patterns, convergent (static) 

patterns, and divergent (unbounded). In particular, the 

emergence of complex patterns may occur if the 

corresponding cell parameters are chosen in the locally-active 

unstable domain, but near the edge of chaos domains. In 



summary, the above investigation confirms once again that 

the local activity theory provides a practical and explicit 

analytical tool for determining a subset of the cell parameter 

space where complexity may emerge. 

IV. PATTERN FORMATION 

     For our CPF (1) computer simulations show that 

oscillatory patterns, chaotic patterns, or divergent patterns 

may emerge if the selected cell parameters are located in 

locally-active domains but near the edge of chaos. This 

research demonstrates once again the effectiveness of the 

local activity theory in choosing the parameters for the 

emergence of complex (static and dynamic) patterns in a 

homogeneous lattice formed by coupled locally-active cells. 

It is interesting to find that the cell parameter of a normal 

heart is located in the locally-active unstable domain but near 

an edge of chaos domain. Roughly speaking, our computer 

simulation shows as the values of 𝐸𝑁𝑎
and 𝐸𝐾  are increased, 

the frequency of the heartbeat (corresponding to the periodic 

frequency of the membrane potential described via the CPF 

equations) also increases. However, the amplitude of the 

membrane potential decreases until the heart stops beating. 

Conversely as the values of 𝐸𝑁𝑎
 and 𝐸𝐾  are decreased, the 

frequency of the heartbeat is also decreased until the heart 

stops beating. These phenomena can be well explained via 

the corresponding bifurcation diagrams. Extensive computer 

simulations on the figure below show that if the chosen cell 

parameters are near the edge of chaos and are located in a 

locally-active unstable region, the corresponding patterns 

may show chaotic, periodic, or unbounded characteristics. 

 

 
(a) irregular spatio-temporal 

pattern 

 

 
(b) spiral wave dynamic pattern 

 

 
(c) edges of the 

associated initial image 

 

Figure 3. Dynamic computer simulations at different cell 

parameter points. 

 

Remark 2. Many processes observed in nature can be 

described as a hierarchy of homogeneous interactions 

between many identical cells. Such cells may consist of 

molecules, physical devices, electronic circuits, biological 

cells, dynamical systems, artificial life-like cells, and other 

abstract entities. What is characteristic of all such systems is 

that under certain circumstances, collective complexity may 

emerge, i.e., the function of the entire system is more than 

simply summing up the functions of its parts. Life itself is a 

supreme manifestation of complexity [2].  

V. CONCLUSIONS 

      In this paper we study coupled FitzHugh Nagumo system 

which a simplification of Hodgkin–Huxley equations of the 

cardiac Purkinje fiber (CPF) model of morphogenesis (1). We 

consider CNN model of the coupled system. The dynamics of 

the obtained model is studied via local activity theory and 

edge of chaos domain is obtained for our coupled system. 

Computer simulations show that oscillatory patterns, static 

patterns, and chaotic dynamic patterns can be obtained if the 

parameter sets are chosen on the edge of chaos domain. 
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