
A novel approximation scheme for floating-point
square root and inverse square root for FPGAs

Pietro Pennestrì
Faculty of EEMCS

University of Twente
7522 NB Enschede, NL

Email: p.pennestri@student.utwente.nl

Yanqiu Huang
Faculty of EEMCS

University of Twente
7522 NB Enschede, NL

Email: yanqiu.huang@utwente.nl

Nikolaos Alachiotis
Faculty of EEMCS

University of Twente
7522 NB Enschede, NL

Email: n.alachiotis@utwente.nl

Abstract—Jointly computing the square root (SQRT) and
the inverse square root (ISQRT) of floating-point numbers is
common in many algorithms, e.g., in image or time series data
processing when computing norms or vector normalization.
Existing designs suffer from high latency and inefficient resource
utilization due to the separate architectures that carry out these
two operations. In this paper, we first propose a non-iterative
approximation method for computing SQRT and ISQRT based
on the Chebyshev min-max criterion to reduce the latency while
meeting the accuracy requirements of various applications;
thereafter a shared architecture of these two operations is
designed and implemented in FPGA with less logic units. In
contrast with other approximation solutions, our method does
not need to perform any iterations and the accuracy can be
mathematically estimated. A comparison with vendor-provided
IP cores for FPGAs revealed that our proposed SQRT/ISQRT
floating-point IP core utilizes less resources while reducing the
clock-cycle latency by nearly four times.

I. INTRODUCTION

The SQRT and ISQRT are two common operations in
algorithms that require both the computation of vector
norms and vector normalization. These tasks frequently
occur in image processing, machine learning, and sensor
fusion applications [1].

Studies have previously mapped these two operations
onto reconfigurable hardware in FPGA [2]. Due to the
resource-demanding nature of these operations on FPGAs,
a common approach is to approximate these functions and
then iteratively refine them, using, for instance, heuristically
determined first-order approximation [1, 3]. This approach,
however, relies on an initial guess, while the required
number of iterations to reach the desired accuracy depends
on the closeness of this initial guess to the actual function
value, which cannot be quantified mathematically. More-
over, most existing FPGA implementations compute either
the SQRT or the ISQRT but not both, thereby requiring
to instantiate two floating-point cores, which results in
inefficient resource usage for computing both operations.
Hasnat et al. [4] presents an FPGA-based architecture that
computes both the SQRT and the ISQRT, which, however,
implements an iterative approximation method, thus its
accuracy cannot be quantified mathematically.

To address the aforementioned limitations, we propose
a novel non-iterative approximation method and describe

a resource-efficient FPGA-based architecture that computes
both the square root and the inverse square root. The main
contributions of this work are:

• We propose a novel polynomial approximation scheme

for
1p
x

and
p

x based on the Chebyshev criterion. It is

non-iterative without an inital guess and the accuracy
can be mathematically estimated.

• We present a shared architecture for the proposed ap-
proximated calculation of these two operations, while
the computation of 1/

p
x and

p
x is independent of

each other.

The paper is organized as follows: Section II introduces
the Chebyshev criterion and Sec. III presents the approx-
imated calculation of (I)SQRT and the FPGA implemen-
tation. The evaluation results are summerized in Sec. IV
followed by the conclusion in Sec. V.

II. CHEBYSHEV APPROXIMATION

Any continuous function can be approximated by using
Chebyshev polynomials at the desired degree with the
mathematically estimated approximation errors. This sec-
tion introduces this approximation theory.

Let f (x) be a given real-valued continuous function. It
can be approximated as

F (P, x) = p0 +p1x +p2x2 +·· ·+pn xn (1)

with n orders of polynomials and coefficients p ∈ P over
an interval of [x0, xn+1] using the Chebyshev min-max
polynomial approximation, such that the distance function
ε(x) is minimized, where

ε (x) = max
x0≤x≤xn+1

∣∣ f (x)−F (P, x)
∣∣ (2)

It is proved that F (P, x) is the Chebyshev approximation
of a differentiable1 function f (x) on [x0, xn+1] if and only
if there exists a set of points

x0 ≤ x1 ≤ x2 ≤ . . . ≤ xn+1

1Recent proofs (e.g. [5]) of the Chebyshev equioscillation theorem
require continuity only. However, the original theorem statement from
Chebyshev[6] includes the differentiability of f (x)

Compute
sqrt(x)

Input Check

YES

Start

The out mantissa is The out mantissa is The out mantissa is

YES YES

 If necessary, normalize mantissa
and adjust out exponent accordingly

The out exponent is

The out exponent is

Compute
sqrt(x)

YES

The out exponent is

The out exponent is

End

Evaluate the polynomial
with set coefficients

Evaluate the polynomial
with set coefficients

bias bias

bias
bias bias

biasbias

bias

even even

Fig. 1: Overall computation scheme of the ISQRT & SQRT
architecture

such that:

ε (xi) = (−1)i L (i = 0,1, . . . ,n +1) (3a)

dε(x)

dx

∣∣∣∣
x=x j

= 0 (j = 1,2, . . . ,n) (3b)

where L denotes the maximum value of ε in [x0, xn+1].
These conditions ensure that the error function ε(x),

within the approximation interval, has (n+2) maximas and
minimas with alternating sign, and n stationary points,
respectively. The previous (2n+2) conditions, expressed by
equations (3), are those required by the so-called Cheby-
shev’s equioscillation theorem [6, 7, 5]. In particular, the
resulting equations form the following nonlinear system

(−1) j+1 L+
n∑

i=0
pi xi

j − f (x) =0 (j = 0,1,2, . . . ,n +1) (4a)

n∑
i=1

i pi xi−1
k − d f (x)

dx

∣∣∣∣
x=xk

=0 (k = 1,2, . . . ,n) (4b)

After solving it using Chebyshev approximation, we can
obtain not only the coefficients of the polynomials,p0, p1,
. . ., pn , but also the maximum error L, as well as the
location x1, x2, . . . , xn where maxima and minima of ε(x)
occur. This makes our method different from others with a
strong mathematical support of the approximation errors.

III. PROPOSED COMPUTATION SCHEME OF (I)SQRT AND

FPGA IMPLEMENTATION

This section introduces the proposed computation scheme
of SQRT and ISQRT based on Chebyshev approximation, as
well as the corresponding FPGA implementation.

A. Approximated SQRT/ISQRT based on Chebyshev theory

Let us denote with x ∈R+ a number on which to apply the

operations of
p

x or
1p
x

. We assume that this number is

expressed according to IEEE754 standard [8]:

x = (−1)s 2eu ·m (5)

where m ∈ [1 , 2) is the mantissa and eu is the unbiased
exponent (e = eu +bias). The following four cases can be
distinguished:

• isqrt even exponent:
1p
x
= 2

−eu
2 · 1p

m
;

• isqrt odd exponent:
1p
x
= 2

−eu+1
2 · 1p

2
· 1p

m
;

• sqrt even exponent:
p

x = 2
eu
2 ·pm;

• sqrt odd exponent:
p

x = 2
eu−1

2 ·p2 ·pm.

On these premises, the task is limited to the computation
of either the inverse square root or the square root of
the mantissa. Hence, the proposed computation scheme
is aimed toward a polynomial approximation of the two
previous operations within the range [1 , 2).

In order to meet different accuracy requirements, we have
tried different polynomial orders, n, with different number
of equally spaced sub-intervals, N . The maximum relative
error is reported in Table I as n and N vary 2. It is obvious
that lower approximation error can be achieved by using
higher polynomial degree or increasing the number of sub-
intervals at the desired degree.

Based on Table I, users can select the proper n and
N according to the accuracy requirement, and store the
coefficients A for the SQRT and B for ISQRT. Depending
on the operation SQRT/ISQRT and the even/odd exponent,
the approximated mantissa can be obtained. Then sqrt(x)
and/or isqrt(x) can be further calculated using Eqs.(6-9).
The overall computation scheme is summarized in Fig. 1.

B. FPGA implementation

In this section, we present the FPGA implementation of
the shared SQRT/ISQRT for the case n = 2 and N = 8. The
proposed architecture is depicted in Fig. 4. The arithmetic
core consists of two basic components, the polyroot,
which computes the polynomial approximation of the out-
put mantissa, and the exponent, which computes the
output exponent as illustrated in Fig. 1. The exponent can
be adapted to implement half-/single-/double-precisiong
floating-point arithmetic.

Fig. 5 shows the block diagram of the polyroot block.
It is based on Horner’s polynomial evaluation scheme

2To replicate the proposed result see https://gitlab.com/mocast-isqrt-
sqrt/matlab-code

TABLE I: Proposed method: Computation of maximum
relative error (MRE) within the range [1 , 2), n: Polynomial
degree , N : number of sub-intervals of log2(N) amplitude

1/
p

x
p

x
n N MRE (this inv.) n N MRE (this inv.)
2 1 3.8335e-03 2 1 7.6384e-04
2 2 7.1823e-04 2 2 1.4346e-04
2 4 1.1463e-04 2 4 2.2916e-05
2 8 1.6430e-05 2 8 3.2855e-06
2 16 2.2090e-06 2 16 4.4179e-07
2 32 2.8674e-07 2 32 5.7347e-08
2 64 3.6537e-08 2 64 7.3073e-09
3 1 5.7648e-04 3 1 8.2059e-05
3 2 6.3523e-05 3 2 9.0636e-06
3 4 5.5903e-06 3 4 7.9832e-07
3 8 4.2321e-07 3 8 6.0452e-08
3 16 2.9293e-08 3 16 4.1847e-09
3 32 1.9301e-09 3 32 2.7573e-10
4 1 8.9120e-05 4 1 9.8694e-06
4 2 5.7777e-06 4 2 6.4124e-07
4 4 2.8042e-07 4 4 3.1147e-08
4 8 1.1213e-08 4 8 1.2457e-09

and consists of an adder, a multiplier, and an on-chip
ROM memory block that stores the polynomial coeffi-
cients. The arithmetic core was mapped to a Cyclone V
5CEFA2F23I7 FPGA.

IV. EVALUATION

This sections evaluates the accuracy and resource uti-
lization of our approximation scheme by comparing it with
related literature.

A. Accuracy comparison

As introduced in Sec. 1, there are different ways of
approximating SQRT/ISQRT. Here we compare the accuracy
of our method with other three methods [1, 3, 4] in
terms of relative error. Fig. 2 depicts the comparison of
our method vs. [1]. It can be observed that our method
achieves two orders of magnitude lower error. The worst
case relative error reported by [3] is 0.0333, which is one
order of magnitude greater than ours. In order to compare
with [4], we use the same intervals. The following linear
approximations are derived based on Chebyshev theory:

P m2
1 (x) =

1.50971358702244−0.500000000000000 · x

1.34377614452159−0.358217995563320 · x

1.28092920145555−0.310455290827024 · x

1.22617183547953−0.272442417019179 · x

1.17789649241698−0.241599852241761 · x

1.13491593196515−0.216167221275863 · x

1.09632697261222−0.194903334931431 · x

(6)

Fig. 3 shows the error comparison between the results
reported in [4] and our method using Eq. (6).

B. Resource utilization and latency comparison

Table II shows resource utilization and a perfor-
mance comparison with the vendor-provided IP cores
ALTFP_INV_SQRT and ALTFP_SQRT. It can be ob-
served that the second-order polynomial approximation

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Mantissa

10-6

10-5

10-4

10-3

10-2

10-1

100

|R
el

at
iv

e
Er

ro
r|

Moroz et al.
This inv.

Fig. 2: comparison of relative error between moroz et al. [1]
and our method

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Mantissa

10-4

10-3

10-2

10-1

|R
el

at
iv

e
Er

ro
r|

This Inv.
Hasnat Magic Number

Fig. 3: 1/
p

x approximation: relative error comparison be-
tween the magic constants proposed by hasnat et al. [4]
and our method using eq. (6)

only needs one DSP block and has a latency of 7 clock cy-
cles. Furthermore, less hardware resources are used (shared
between the SQRT and the ISQRT). More specifically, up
to 3.7x less logic resources and up to 9x less registers are
utilized at the cost of a 9x increase in block RAMs, which
allows for higher flexibility in efficiently using the target
hardware since ALMs and registers can, unlike block RAMs,
be efficiently used to implement any functionality.

Table III provides the maximum operating clock fre-
quency for Slow 1100mV 100C, Slow 1100mV -40C,
Fast 1100mV 100C, Fast 1100mV -40C models.

Approximation accuracy was measured using Modelsim
simulations. The maximum relative error both for 1/

p
x andp

x, is lower than 1/2 ulp of the half precision format.

V. CONCLUSION

Novel polynomial approximations, based on the Chebyshev
min-max criterion, for the considered operations,have been
proposed. The accuracy achieved compares positively with
that presented in recently published literature. An architec-
ture capable of independently computing, in floating point

notation, both
p

x and
1p
x

was designed and implemented

into FPGA. The result was compared with existing vendor-
provided IP cores, achieving 3 and 4 times less logic
utilization for ALTFP_INV_SQRT and ALTFP_SQRT, re-
spectively. The proposed architecture uses 6 times less DSP
blocks than the ALTFP_INV_SQRT. The latency in clock

Fig. 4: Top View of the implemented architecture

Fig. 5: Proposed simplified schematic of the mantissa com-
putation block (polyroot architecture)

TABLE II: Resource utilization and performance on a Cy-
clone V FPGA, and comparison with vendor IP cores.

This work ALTFP_INV_SQRT ALTFP_SQRT
Logic Utilization (ALMs) 66/9430 (< 1%) 278/9430 (3%) 245/9430 (3%)
Registers 60 925 542
Block Memories 1280/1802240 (<1%) 565/1802240 (<1%) 143/1802240
DSP Blocks 1/25 (4%) 6/25 (24%) 0/25 (0%)
Latency (clock cycles) 7 26 16

cycles is 3 and 2 times less than the ALTFP_INV_SQRT
and the ALTFP_SQRT, respectively.

TABLE III: Timing Analysis: Maximum Frequency

Model Max. Frequency [MHz]
Slow 1100mV 100C 127.28
Slow 1100mV -40C 123.87
Fast 1100mV 100C 230.47
Fast 1100mV -40C 260.28

REFERENCES

[1] L. V. Moroz, V. V. Samotyy, and O. Y. Horyachyy, “Modi-
fied fast inverse square root and square root approx-
imation algorithms: the method of switching magic
constants,” p. 21.

[2] Y. Li and W. Chu, “Implementation of single pre-
cision floating point square root on FPGAs,” in
Proceedings. The 5th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines Cat.
No.97TB100186). IEEE Comput. Soc, 1997, pp. 226–232.

[3] L. Parrilla, A. Lloris, E. Castillo, and A. Garcia, “Table-free
seed generation for hardware newton–raphson square
root and inverse square root implementations in IoT
devices,” pp. 1–1.

[4] A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and
D. Bhattacharjee, “A fast FPGA based architecture for
computation of square root and inverse square root.”
IEEE, pp. 383–387.

[5] R. Mayans, “The Chebyshev equioscillation theorem,”
Convergence, 2007.

[6] P. Chebyshev, “Sur les parallélogrammes les plus simples
symmétriques autour d’un axe,” in Oeuvres de P.L.
Tchebichev. Académie Impériale del Sciences, 1907,
vol. II, pp. 709–715, published in 1878.

[7] E. Remez, General computational methods of Chebyshev
approximation: The problems with linear real param-
eters , ser. Translation series. U.S. Atomic Energy
Commission, Division of Technical Information, 1962.

[8] “IEEE standard for binary floating-point arithmetic,”
ANSI/IEEE Std 754-1985, pp. 1–20, 1985.

