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Abstract— During recent years, various hardware platforms
were developed,  each one  suitable for use in  different kind of
applications. Platforms based on FPGAs, DSPs,  GPUs, Single
Board  Computers,  microcontrollers  extend  processing
capabilities  and  functionality  in  comparison  with  traditional
personal computers  based on a single  CPU.  Furthermore,  co-
design combines advantages from different types of processing
units,  rendering  such  architectures  more  attractive  to
researchers.  In  this  paper,  we  achieve  acceleration  of  image
processing  algorithms using  a  hardware  platform based  on a
Raspberry  Pi  Single  Board  Computer  and a  custom designed
FPGA HAT (Hardware Attached on Top) for RPi. The FPGA
HAT consists of a Cyclone 10LP device. The FPGA undertakes a
computationally  demanding load,  such  as  robotic  vision
algorithms  exploiting  parallelism,  while  the  RPi  can  apply
higher level  operations such as running ROS (Robot Operating
System).  In  order  to  overcome bottleneck  in  exchanging data
between RPi and FPGA, a 16-bit  parallel  customized protocol
was  developed  from  scratch.  The  achieved  transfer  rate  was
about  50 Mbytes/sec  when  multi  threaded  software  was
implemented  for  the  RPi. An  image  edge  detector  was
implemented in order to  verify the system performance.  When
only the  RPi was used, the processing rate was 48fps for images
with  resolution  512x512  pixels.  RPi and  FPGA  co-design
achieved processing rate 170fps for the same resolution images,
which  means  an  acceleration  of  about  350%.  The  proposed
system was also evaluated in terms of power consumption.
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I. INTRODUCTION 

In many embedded systems, the need for high computing
power is imperative. In some UAVs, AUVs and ROVs, the
requirements  demand  the  use  of  a  personal  computer
running an operating system. In the late 90’s, a common way
to include a personal computer in a device was to place a
motherboard with its  processor and plug all  the necessary
cards in the motherboard [1] in order to achieve the desired
functionality.  In  recent  years,  SBCs  (Single  Board
Computers)  are  mainly used whenever  embedded systems
require such computing capabilities. The potential of using
SBCs  became  more  attractive  with  the  advent  of  the
Raspberry  Pi  when  a  group  of  students  at  University  of
Cambridge  started  prototyping  a  small  single  board
computer  in  2006  and  released  it  as  a  product  in  2012.
Raspberry Pi  is now widely used in robotic platforms for
commercial  [2],  educational  [3],  even  for  space  [4]
applications. On the other hand, there is immense literature
in which researchers  use specialized hardware  to  increase
execution  speed when  a  high  data  volume  must  be

processed. Applications based on GPUs [5], FPGAs [5], co-
designs  [6] take  advantage  of  parallelism in  hardware  and
accelerate computer vision applications.

In this paper, we accelerate image processing algorithms
on a custom hardware platform which is based on Raspberry
Pi  and  FPGA.  The  FPGA  board  constitutes  a  Hardware
Attached on Top (HAT) of the Raspberry Pi board. It consists
of a Cyclone 10LP, configuration memory and  the required
support  circuits.  The  FPGA  HAT is  connected to  the
expansion connector of the Raspberry Pi.  It is used as a co-
processor  for  the  overall system.  It  takes  over  heavy
processing load, relieving the RPi’s ARM processor for other
operations. The  Raspberry  Pi  captures  images  and  sends
frames to the FPGA HAT. The FPGA processes the incoming
frames  according  to  the  required  task  and  sends  back  the
results.  By  implementing a  Prewitt edge  detector  in  the
FPGA, we achieved to execute the algorithm more than three
and a half times  faster  in comparison with RPi’s standalone
operation. Furthermore, a 16-bit fast parallel communications
interface has  been  implemented  from  scratch  for  data
exchange between Raspberry  Pi  and  FPGA  through  their
GPIOs, achieving high data rates.  The interface follows an
asynchronous  handshaking  logic.  The  communication
interface  contributed  to  minimize  bottleneck  in
communication between the two processing units.

The proposed work targets robotic vision applications in
which the Raspberry Pi runs ROS (Robot Operating System)
and  performs  higher  level  operations  as  well  as  image
acquisition.  Generally,  image  processing  algorithms  are
computationally  demanding  and  may  require  FFTs,
convolutions, filtering, etc. Single Board Computers usually
fail to operate satisfactorily due to the low computing power
of its main processor and to the non real-time nature of their
operating system. When real time operation is required, which
is  quite  common  in  robotic  vision  applications,  special
hardware is adopted to act as a co-processor.

Following from the above considerations, the contribution
of this paper is summarized as follows.

 We  propose  a  hardware  architecture  based  on  a
Raspberry  Pi  and  an  FPGA HAT.  The  architecture
targets robotic vision applications. Schematic and PCB
designs were implemented from scratch.

 We  accelerate  execution  of  image  processing
algorithms  achieving  about  350%  speed  up  for  a
Prewitt  Edge  Detector.  FPGA  takes  over  the
computational  demanding  tasks,  while  Raspberry  Pi



can execute higher level operations such as running
running ROS over embedded Linux.

 We  implemented a  custom  fast  16-bit  parallel
interface  between  Raspberry  Pi  and  FPGA,  which
provides  communication  speed  approximately
44.5MBytes/sec.

The rest of the paper is organized as follows. Section II
presents  a brief literature survey. Section III describes the
details of the implemented hardware/software co-design. In
Section IV, the evaluation of the architecture  is  provided.
Section V concludes the paper.

II. LITERATURE SURVEY

The use of an FPGA as a co-processor/accelerator for the
Raspberry Pi is not a new concept. It has been tried multiple
times  since  the  first  Raspberry  Pi  came  out  in  2012.
However, most  of  those  implementations  have  been
rendered outdated or lack the speed needed to justify their
use  as  a  co-processor.  The  proposed  co-design  is  fast,
expandable  and  cost  efficient.  Below,  we  present  briefly
related works found in the literature. 

In  [7],  the DE0-Nano Cyclone  IV development  board
was used to  capture  data from the onboard accelerometer
and send the data to a Raspberry Pi 3 via an 8 bit parallel
interface. A python script receives and passes accelerometer
data to a ROS instance to simulate a humanoid robot fall.

In  [8],  an  image  processor  on  a  Basys-2  FPGA
development board  was used to apply various image filters
e.g. convert to B/W or grayscale,  flip or rotate a predefined
image  icon  and  view  the  result  on  a  computer  monitor
through the VGA output of the Basys board. A python script
running on the  Raspberry  Pi transmits a 4 bit code to the
FPGA and the corresponding filter is applied.

Similarly,  in  [9],  a  web  server  is  running  on  the
Raspberry  Pi,  where  the  user  can  select  the  filter  to  be
applied using a web interface. Selection is then transmitted
from the Raspberry Pi to the image processor on the FPGA.
Afterwards, filtering is applied and the results are displayed
to a monitor.  The input  image is preloaded to the FPGA
memory as a “.coe” file.

In  [10],  a  modular  architecture  using  FPGA  and/or
microcontroller boards for Raspberry Pi is presented.  Each
module  can  be  connected  to  the  platform in  a  cascading
manner.  Communication  between  Raspberry  Pi  and
FPGA/microcontroller is performed using the I2C bus which,
however, induces a bottleneck in case of large data volumes.

In  the proposed  architecture,  Raspberry  Pi is the main
controller and  the  FGPA accelerator card acts as an image
co-processor.  Filters  to  be  applied  are  hardcoded  on  the
Cyclone 10LP. All the processed frames are returned back to
the Raspberry Pi for further processing or to be viewed using
the HDMI output port.

III. HARDWARE/SOFTWARE CO-DESIGN  

A. Hardware Implementation

The FPGA accelerator  HAT (Fig. 1) was built  around
Intel’s  Cyclone 10 LP (10CL025YE144) which  consists of
25k logic elements (LEs) and 88 GPIOs. The Cyclone 10 LP
requires  3  different  power  supply  sources to  operate
properly. Core requires 1.2V, analog blocks (e.g. PLL) need
2.5V, and supply for I/O pins can reach up to 3.3V. A pair of
dual  output  LTC3419  step  down  regulators  was  used  to

provide the required voltage levels to the FPGA chip. Voltage
level  on  one  of  the  outputs  of  the  buck  converter  can  be
selected by the user using jumpers, setting the I/O voltage to
banks 7 and 8 of the Cyclone FPGA to either 1.8V, 2.5V or
3.3V.

All but one of 76 available I/O pins of the Cyclone 10LP
are connected to an Arduino UNO R3 expansion header,  2
PMOD expansion ports and a 2x13 pin header. There is also a
momentary switch connected to the last remaining I/O of the
FPGA, primarily used as a software reset button. The Cyclone
10LP  and  Raspberry  Pi  share  access  to  the  Arduino  Uno
header pins but only one device can access it at a time. If no
arduino shield is used then those shared lines can act as a bus
between the FPGA and the Raspberry Pi.

Moreover, a 50 MHz crystal oscillator was used as clock
source for the Cyclone 10LP to function. 

In  order  to  configure  the  FPGA,  Intel  EPCQ4  serial
configuration memory is included in the board. Cyclone 10LP
can  be  programmed  either  by  using  the  physical  onboard
JTAG port  or  via  the  Raspberry  Pi  without  the  need  of  a
JTAG programmer.

The FPGA accelerator  board  was designed as a 4 layer
layout with 2 signal planes, one power and one ground plane.
The exterior dimensions of the PCB are 85x64 mm.

B. Serial Connectivity

There is a direct JTAG connection between Raspberry Pi
and  the  FPGA  accelerator  card.  Using  software  like
OpenOCD  [11] the configuration  can  be  sent from  the
Raspberry Pi to the FPGA or saved to onboard configuration
memory without the need of cables and external programmer.

The Raspberry Pi is connected to the FPGA using various
interfaces.  The  Raspberry  Pi’s  UART  (serial  pins)  are
connected  to  the  Arduino Uno header  RX-TX pins.  Those
pins are also connected to the FPGA. When the UART is not
used for an externally connected device,  it  can be used for
communication  between  FPGA  and  RPi. The  same  also
applies to the I2C lines. Two FPGA pins are connected to the
SCL, SDA lines of the Rpi, and it can act as a secondary I2C
device.

A third serial interface is supported.  SPI communication
interface  between  Raspberry  Pi  and  Cyclone  10LP  can  be
achieved but only in software mode from the Raspberry Pi’s
side.  The  RPi’s  hardware SPI lines  are  reserved for  JTAG
communication.

C. 16-bit parallel connectivity using GPIO

A 16-bit parallel protocol was implemented as high rate of
data  exchange  between  the  Raspberry  Pi  and  the  FPGA

Fig. 1. The FPGA HAT.



accelerator  HAT was needed. To implement this protocol,
all of the shared Arduino Uno header lines were utilized: 16
for data, 1 as write enable line, 1 as read enable line and a
read-write strobe line, 19 data lines in total.

The Raspberry PI treats the FPGA HAT as an EPROM
memory chip. There is no clock source for synchronization
but rather  a  strobe  signal  along with the WE/RE lines to
signal a read or write as fast as the RPi can provide or read
data. When the RPi is about to send data to the FPGA, the
WE signals asserts. Data are launched at each falling edge of
the strobe signal and considered valid at each rising edge.
The FPGA samples  data  lines  at  each  rising edge of  the
strobe signal as long as WE signal asserts. When the RPi
receives data, the RE signal asserts. The data from the FPGA
side are launched at each falling edge of the strobe signal
and  are  considered  valid  at  each  rising edge.  The timing
diagram of the communication interface is shown in Fig. 2.

RPi  determines  how fast  strobe  asserts  and  de-asserts
according  to  its  processing  speed.  It  is  assumed  that  the
FPGA, as a faster device than RPi, will always have data
available to launch when strobe de-asserts or will be able to
read  data  when  the  strobe  line  asserts.  By  implementing
sophisticated software from the Raspberry Pi’s side, the data
exchange  rate  between  the  two  processing  elements  can
reach up to 50MBytes/sec.

D. Software/Firmware implementation

In  order  to  verify  the  processing  acceleration  of  the
proposed  co-design,  various  tests  have  been  performed.
Firstly, from the Raspberry Pi’s side, a single threaded C++
program  was  created  that  pushed  a  predefined  array  of
characters, containing a sine wave and a ramp, to the FPGA
using the aforementioned parallel protocol, sending 2 bytes
(16-bit) per single transfer. To verify that the data is received
correctly,  a  configuration  that  included  an  instance  of
signalTap was developed on Cyclone 10LP. This one way of
data transmission achieved around 50 Mbytes/sec.

When  it  was verified  that  Cyclone 10LP received  the
data correctly, a 4096 bytes FIFO buffer  was added  to our
configuration  to  push  the  received data  back  to  the
Raspberry Pi. The FPGA accelerator HAT does not use any
external  memory.  As  a  result,  the  need  for  intermediate
storage or buffering is satisfied by the on-chip memory of
the  Cyclone 10LP. The actual  data exchange at this point
dropped down to 24 Mbytes per second due to the fact that
delays are inserted when the program switches mode of the
GPIO from read to write and vice-versa. 

In  the  next  step, a  second  identical  FIFO buffer  was
added to our FPGA configuration. Between these two FIFO
buffers we added a Prewitt edge detection filter [12], as it is
shown in Fig. 3. Edge detection configuration on the FPGA
HAT processes incoming data from the first FIFO buffer and
stores them in the second buffer. FIFO buffers have different
data lengths on their inputs and their outputs. Since the edge
detection algorithm processes bytes instead of 16-bit  short

integer  values,  half  of  the  data  are  processed  during write
cycles and the other half during read cycles.

On the Raspberry Pi side, a CSI V2 camera  was used  to
capture a  greyscale  video  feed  at  resolution  of  512x512
pixels. Each frame was pushed to the FPGA HAT in order to
apply the edge detection filter. The Raspberry Pi V2 camera
can capture up to 90fps at this resolution.

Finally,  the  processed  frame  was sent  back  to  the
Raspberry Pi and the frame was viewed in a window. Image
results are depicted in Fig. 4. and in Fig. 5. At this point, the
actual data transfer rate has dropped significantly down to 8
Mbytes/sec or close to 30 frames per second on a Raspberry
Pi 4 with 8Gbytes of RAM. This is because the Raspberry Pi
uses an embedded Linux (Raspbian) which is a non Real-time
operating system.  It adds some delay to the transmission of
the data through its GPIO, but most importantly because of
how Raspberry Pi captures the video feed. The Raspberry Pi
has  to  pause  the  execution  of  the  main  data  transmission
program, to capture a frame from the camera and store it on a
buffer.

For  each  captured  frame  the  delay  is  approximately
13.5ms per frame and up to 25ms as shown in Fig. 6. At 30
frames per second this translates to no data being transmitted
by the FPGA HAT up to 75% of the time.

Fig. 2. Timing diagram.

Fig. 3. Data Flow diagram on the FPGA configuration

Fig. 4. Input frame. Fig. 5. Frame after edge detection
filter.

Fig. 6. Transmission gap between frames.



To overcome this delay,  a  multithreaded program was
developed. In this program, one execution thread constantly
captures frames  and  stores  them  into  a  buffer.  Another
thread  transmits the  frame  data  to  the  FPGA  HAT and
receives data back after the edge detection filter is applied.
At  the  end,  a  third  thread  shows the  processed  frame on
screen, as it is depicted in Fig. 7.

By using this technique, the actual frame rate has been
increased to 170 fps which is a  significant speed-up. This
change is also visible on the oscilloscope view, where there
is no delay between frames transmission, as it is shown in
Fig. 8. As mentioned before, the Raspberry Pi camera can
capture up to 90 frames per second, meaning excess frames
are processed twice.

A similar  C++ program that uses OpenCV to apply the
same edge detection filter to the video feed can only achieve
48  frames  per  second,  at  the  same  512x512  video  feed
resolution. This means that in the proposed architecture, the
acceleration is about 350% for this task.

IV. SYSTEM EVALUATION

In this Section, the evaluation of the system in terms of
power  consumption  and  speed  is presented.  A  test  setup
using a Raspberry Pi 4 with 8GBytes RAM and a multimeter
connected  in  series  was  created.  With  the  aid  of  the
multimeter, we were able to measure  min, max and  mean
current values and to estimate power consumption in various
operation states.  VNC was used in order  to be connected
remotely with the Raspberry Pi.

The first measurements concern the RPi’s operation with
and without the additional processing load which is added
when the edge detection task runs. In Table I, as IDLE is

represented  the  state  in  which  the  Raspberry  Pi  has  just
finished the boot process. The state in which we have opened
a VNC connection with RPi is referred as VNC. Finally, the
state when the C++ program executes  edge detection using
the OpenCV library is indicated as OPENCV.

TABLE I. INITIAL MEASUREMENTS (FPGA HAT DETACHED).

Current
consumption

(in A)

Raspberry Pi without the  FPGA HAT attached

MIN AVERAGE MAX

IDLE 0.46 0.51 0.54

VNC 0.48 0.52 0.59

OPENCV 0.8 0.9 1.04

Subsequently, the FPGA HAT was attached and the same
measurements  were  done  again. Moreover,  two  more
measurements took place. In these two measurements, FPGA
HAT  applied  edge  detection.  In  the  first  one,  the  single
threaded  program  was  executed  in  the  Raspberry  Pi.  The
multi  threaded  program  ran  in  the  second  one.  The
corresponding measurements are presented in Table II.

TABLE II. MEASUREMENTS WITH THE FPGA HAT ATTACHED.

Current
consumption (in A)

Raspberry Pi with the  FPGA HAT attached

MIN AVERAGE MAX

IDLE 0.51 0.52 0.57

VNC 0.51 0.56 0.6

OPENCV 0.81 0.92 1.1

FPGA (single 
thread)

0.82 0.82 0.84

FPGA (multi thread) 0.81 1.12 1.2

Table III  presents the performance of the system in each
case. As it can be seen, when the multi threaded C++ program
is executed in conjunction with the FPGA HAT operation, the
system  performance  increases.  The  acceleration  in
comparison with single threaded program is more than 500%,
while  in  comparison  with  the  program  that  uses  OpenCV
library is more than 350%.

TABLE III. PERFORMANCE MEASUREMENTS.

Frames per second for each process
Raspberry Pi 4 

FPS (Best)

OPENCV 48

FPGA (single thread) 32.4

FPGA (multi thread) 172

The evaluation continued in terms of CPU usage,  CPU
temperature  and  overall  power  consumption.  The  LXTask
system monitor was used to register CPU usage. Furthermore,
vcgencmd utility was installed to measure CPU temperature,
while  the  power  consumption  was  calculated  using  the
attached multimeter. Experimental results are quoted in Table
IV.

By  adopting the  multi  threaded  program,  the  overall
consumption  is  about  20%  more  in  comparison  with  the
process  that  uses OpenCV  library  to  apply edge detection.
The FPGA HAT consumes the extra power.  However,  the
RPi’s  CPU  temperature  appears  lower  (64oC  vs  71oC)
regardless of the fact that CPU usage is almost twice as high
(90% vs 46%). This is attributed to that no intensive functions

Fig. 7. Output view of the multithreaded process.

Fig. 8. Data exchange in the multithreaded program.



are  applied to  the  Raspberry  Pi,  since  edge detection has
been implemented in the FPGA HAT. This leads to a lower
wear in the long run.

TABLE IV. EVALUATION IN TERMS OF CPU USAGE, TEMPERATURE
AND POWER CONSUMPTION.

Power consumption in
(A) Amp

Raspberry Pi with the  FPGA HAT
attached

CPU
usage time

(%)

Temperature
(oC)

Power
consumption

(W)

IDLE 3 55 2.6

VNC 8 55 2.8

OPENCV 46 71 4.6

FPGA (single thread) 33 62 4.1

FPGA (multi thread) 90 64 5.6

The  single  threaded  process  can  be  used  when  high
speed frame rate is not required and even though it performs
35% slower than OpenCV, the system can run cooler, with
lower power requirements and less CPU usage. It  performs
better in cases where the Raspberry Pi – FPGA combination
is  powered  by  batteries  and  it  can  offer  lower  power
consumption which translates to longer battery runtime and
fewer charging cycles for the same amount of work.

Lastly,  the following table (Table V) highlights the cost
increase of the setup when using an FPGA HAT along with
the Raspberry Pi.

TABLE V. COST INCREASE IN REGARD TO THE CYCLONE FPGA IC
USED.

Cyclone FPGA on
HAT Total Cost  

Total cost with a
RPI4 / 4G

Cost
increase

(%)

10cl006 € 50.00 € 100.00 200%

10cl010 € 65.00 € 115.00 230%

10cl016 € 80.00 € 130.00 260%

10cl025 € 100.00 € 150.00 300%

Therefore,  the  increase  in  cost  (almost  300%  when
adopting the most expensive pin-to-pin FPGA of the same
family) is lower than the performance gain (which is close to
350%) compared to the Raspberry Pi stand-alone operation.

V. CONCLUSION

In  this  paper,  we  accelerate  image  image  processing
algorithms  using  a  custom  built  system  that  includes an
FPGA-Raspberry  Pi  combination.  A  fast  16-bit  parallel
protocol was implemented and performance was optimized
by using multithread techniques to outperform solutions that

use  software  only  implementations  like  OpenCV.  The
proposed  system  achieved  350%  acceleration  of  an  edge
detector.  The  system  can  be  used  in  robotic  vision
applications  where  the  FPGA undertakes  heavy  processing
load and the Raspberry Pi can run ROS and apply higher-
level operations.

Further  work  includes the  design  of  a  TPU  (tensor
processing unit) configuration for the FPGA HAT that  can
benefit from the fast 16-bit parallel  protocol and accelerate
tensorflow calculations on the Raspberry Pi.
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