
Acceleration of image processing algorithms
based on a Single Board Computer and FPGA

co-design
Petros Kokotis

Dpt. of Computer, Informatics and Telecommunications
Engineering

International Hellenic University
Serres, Greece

petroskokotis@fpga.gr

John Vourvoulakis
Dpt. of Computer, Informatics and Telecommunications

Engineering
International Hellenic University

Serres, Greece
jvourv@ihu.gr

Abstract— During recent years, various hardware platforms
were developed, each one suitable for use in different kind of
applications. Platforms based on FPGAs, DSPs, GPUs, Single
Board Computers, microcontrollers extend processing
capabilities and functionality in comparison with traditional
personal computers based on a single CPU. Furthermore, co-
design combines advantages from different types of processing
units, rendering such architectures more attractive to
researchers. In this paper, we achieve acceleration of image
processing algorithms using a hardware platform based on a
Raspberry Pi Single Board Computer and a custom designed
FPGA HAT (Hardware Attached on Top) for RPi. The FPGA
HAT consists of a Cyclone 10LP device. The FPGA undertakes a
computationally demanding load, such as robotic vision
algorithms exploiting parallelism, while the RPi can apply
higher level operations such as running ROS (Robot Operating
System). In order to overcome bottleneck in exchanging data
between RPi and FPGA, a 16-bit parallel customized protocol
was developed from scratch. The achieved transfer rate was
about 50 Mbytes/sec when multi threaded software was
implemented for the RPi. An image edge detector was
implemented in order to verify the system performance. When
only the RPi was used, the processing rate was 48fps for images
with resolution 512x512 pixels. RPi and FPGA co-design
achieved processing rate 170fps for the same resolution images,
which means an acceleration of about 350%. The proposed
system was also evaluated in terms of power consumption.

Keywords—fpga, accelerator, raspberry pi

I. INTRODUCTION

In many embedded systems, the need for high computing
power is imperative. In some UAVs, AUVs and ROVs, the
requirements demand the use of a personal computer
running an operating system. In the late 90’s, a common way
to include a personal computer in a device was to place a
motherboard with its processor and plug all the necessary
cards in the motherboard [1] in order to achieve the desired
functionality. In recent years, SBCs (Single Board
Computers) are mainly used whenever embedded systems
require such computing capabilities. The potential of using
SBCs became more attractive with the advent of the
Raspberry Pi when a group of students at University of
Cambridge started prototyping a small single board
computer in 2006 and released it as a product in 2012.
Raspberry Pi is now widely used in robotic platforms for
commercial [2], educational [3], even for space [4]
applications. On the other hand, there is immense literature
in which researchers use specialized hardware to increase
execution speed when a high data volume must be

processed. Applications based on GPUs [5], FPGAs [5], co-
designs [6] take advantage of parallelism in hardware and
accelerate computer vision applications.

In this paper, we accelerate image processing algorithms
on a custom hardware platform which is based on Raspberry
Pi and FPGA. The FPGA board constitutes a Hardware
Attached on Top (HAT) of the Raspberry Pi board. It consists
of a Cyclone 10LP, configuration memory and the required
support circuits. The FPGA HAT is connected to the
expansion connector of the Raspberry Pi. It is used as a co-
processor for the overall system. It takes over heavy
processing load, relieving the RPi’s ARM processor for other
operations. The Raspberry Pi captures images and sends
frames to the FPGA HAT. The FPGA processes the incoming
frames according to the required task and sends back the
results. By implementing a Prewitt edge detector in the
FPGA, we achieved to execute the algorithm more than three
and a half times faster in comparison with RPi’s standalone
operation. Furthermore, a 16-bit fast parallel communications
interface has been implemented from scratch for data
exchange between Raspberry Pi and FPGA through their
GPIOs, achieving high data rates. The interface follows an
asynchronous handshaking logic. The communication
interface contributed to minimize bottleneck in
communication between the two processing units.

The proposed work targets robotic vision applications in
which the Raspberry Pi runs ROS (Robot Operating System)
and performs higher level operations as well as image
acquisition. Generally, image processing algorithms are
computationally demanding and may require FFTs,
convolutions, filtering, etc. Single Board Computers usually
fail to operate satisfactorily due to the low computing power
of its main processor and to the non real-time nature of their
operating system. When real time operation is required, which
is quite common in robotic vision applications, special
hardware is adopted to act as a co-processor.

Following from the above considerations, the contribution
of this paper is summarized as follows.

 We propose a hardware architecture based on a
Raspberry Pi and an FPGA HAT. The architecture
targets robotic vision applications. Schematic and PCB
designs were implemented from scratch.

 We accelerate execution of image processing
algorithms achieving about 350% speed up for a
Prewitt Edge Detector. FPGA takes over the
computational demanding tasks, while Raspberry Pi

can execute higher level operations such as running
running ROS over embedded Linux.

 We implemented a custom fast 16-bit parallel
interface between Raspberry Pi and FPGA, which
provides communication speed approximately
44.5MBytes/sec.

The rest of the paper is organized as follows. Section II
presents a brief literature survey. Section III describes the
details of the implemented hardware/software co-design. In
Section IV, the evaluation of the architecture is provided.
Section V concludes the paper.

II. LITERATURE SURVEY

The use of an FPGA as a co-processor/accelerator for the
Raspberry Pi is not a new concept. It has been tried multiple
times since the first Raspberry Pi came out in 2012.
However, most of those implementations have been
rendered outdated or lack the speed needed to justify their
use as a co-processor. The proposed co-design is fast,
expandable and cost efficient. Below, we present briefly
related works found in the literature.

In [7], the DE0-Nano Cyclone IV development board
was used to capture data from the onboard accelerometer
and send the data to a Raspberry Pi 3 via an 8 bit parallel
interface. A python script receives and passes accelerometer
data to a ROS instance to simulate a humanoid robot fall.

In [8], an image processor on a Basys-2 FPGA
development board was used to apply various image filters
e.g. convert to B/W or grayscale, flip or rotate a predefined
image icon and view the result on a computer monitor
through the VGA output of the Basys board. A python script
running on the Raspberry Pi transmits a 4 bit code to the
FPGA and the corresponding filter is applied.

Similarly, in [9], a web server is running on the
Raspberry Pi, where the user can select the filter to be
applied using a web interface. Selection is then transmitted
from the Raspberry Pi to the image processor on the FPGA.
Afterwards, filtering is applied and the results are displayed
to a monitor. The input image is preloaded to the FPGA
memory as a “.coe” file.

In [10], a modular architecture using FPGA and/or
microcontroller boards for Raspberry Pi is presented. Each
module can be connected to the platform in a cascading
manner. Communication between Raspberry Pi and
FPGA/microcontroller is performed using the I2C bus which,
however, induces a bottleneck in case of large data volumes.

In the proposed architecture, Raspberry Pi is the main
controller and the FGPA accelerator card acts as an image
co-processor. Filters to be applied are hardcoded on the
Cyclone 10LP. All the processed frames are returned back to
the Raspberry Pi for further processing or to be viewed using
the HDMI output port.

III. HARDWARE/SOFTWARE CO-DESIGN

A. Hardware Implementation

The FPGA accelerator HAT (Fig. 1) was built around
Intel’s Cyclone 10 LP (10CL025YE144) which consists of
25k logic elements (LEs) and 88 GPIOs. The Cyclone 10 LP
requires 3 different power supply sources to operate
properly. Core requires 1.2V, analog blocks (e.g. PLL) need
2.5V, and supply for I/O pins can reach up to 3.3V. A pair of
dual output LTC3419 step down regulators was used to

provide the required voltage levels to the FPGA chip. Voltage
level on one of the outputs of the buck converter can be
selected by the user using jumpers, setting the I/O voltage to
banks 7 and 8 of the Cyclone FPGA to either 1.8V, 2.5V or
3.3V.

All but one of 76 available I/O pins of the Cyclone 10LP
are connected to an Arduino UNO R3 expansion header, 2
PMOD expansion ports and a 2x13 pin header. There is also a
momentary switch connected to the last remaining I/O of the
FPGA, primarily used as a software reset button. The Cyclone
10LP and Raspberry Pi share access to the Arduino Uno
header pins but only one device can access it at a time. If no
arduino shield is used then those shared lines can act as a bus
between the FPGA and the Raspberry Pi.

Moreover, a 50 MHz crystal oscillator was used as clock
source for the Cyclone 10LP to function.

In order to configure the FPGA, Intel EPCQ4 serial
configuration memory is included in the board. Cyclone 10LP
can be programmed either by using the physical onboard
JTAG port or via the Raspberry Pi without the need of a
JTAG programmer.

The FPGA accelerator board was designed as a 4 layer
layout with 2 signal planes, one power and one ground plane.
The exterior dimensions of the PCB are 85x64 mm.

B. Serial Connectivity

There is a direct JTAG connection between Raspberry Pi
and the FPGA accelerator card. Using software like
OpenOCD [11] the configuration can be sent from the
Raspberry Pi to the FPGA or saved to onboard configuration
memory without the need of cables and external programmer.

The Raspberry Pi is connected to the FPGA using various
interfaces. The Raspberry Pi’s UART (serial pins) are
connected to the Arduino Uno header RX-TX pins. Those
pins are also connected to the FPGA. When the UART is not
used for an externally connected device, it can be used for
communication between FPGA and RPi. The same also
applies to the I2C lines. Two FPGA pins are connected to the
SCL, SDA lines of the Rpi, and it can act as a secondary I2C
device.

A third serial interface is supported. SPI communication
interface between Raspberry Pi and Cyclone 10LP can be
achieved but only in software mode from the Raspberry Pi’s
side. The RPi’s hardware SPI lines are reserved for JTAG
communication.

C. 16-bit parallel connectivity using GPIO

A 16-bit parallel protocol was implemented as high rate of
data exchange between the Raspberry Pi and the FPGA

Fig. 1. The FPGA HAT.

accelerator HAT was needed. To implement this protocol,
all of the shared Arduino Uno header lines were utilized: 16
for data, 1 as write enable line, 1 as read enable line and a
read-write strobe line, 19 data lines in total.

The Raspberry PI treats the FPGA HAT as an EPROM
memory chip. There is no clock source for synchronization
but rather a strobe signal along with the WE/RE lines to
signal a read or write as fast as the RPi can provide or read
data. When the RPi is about to send data to the FPGA, the
WE signals asserts. Data are launched at each falling edge of
the strobe signal and considered valid at each rising edge.
The FPGA samples data lines at each rising edge of the
strobe signal as long as WE signal asserts. When the RPi
receives data, the RE signal asserts. The data from the FPGA
side are launched at each falling edge of the strobe signal
and are considered valid at each rising edge. The timing
diagram of the communication interface is shown in Fig. 2.

RPi determines how fast strobe asserts and de-asserts
according to its processing speed. It is assumed that the
FPGA, as a faster device than RPi, will always have data
available to launch when strobe de-asserts or will be able to
read data when the strobe line asserts. By implementing
sophisticated software from the Raspberry Pi’s side, the data
exchange rate between the two processing elements can
reach up to 50MBytes/sec.

D. Software/Firmware implementation

In order to verify the processing acceleration of the
proposed co-design, various tests have been performed.
Firstly, from the Raspberry Pi’s side, a single threaded C++
program was created that pushed a predefined array of
characters, containing a sine wave and a ramp, to the FPGA
using the aforementioned parallel protocol, sending 2 bytes
(16-bit) per single transfer. To verify that the data is received
correctly, a configuration that included an instance of
signalTap was developed on Cyclone 10LP. This one way of
data transmission achieved around 50 Mbytes/sec.

When it was verified that Cyclone 10LP received the
data correctly, a 4096 bytes FIFO buffer was added to our
configuration to push the received data back to the
Raspberry Pi. The FPGA accelerator HAT does not use any
external memory. As a result, the need for intermediate
storage or buffering is satisfied by the on-chip memory of
the Cyclone 10LP. The actual data exchange at this point
dropped down to 24 Mbytes per second due to the fact that
delays are inserted when the program switches mode of the
GPIO from read to write and vice-versa.

In the next step, a second identical FIFO buffer was
added to our FPGA configuration. Between these two FIFO
buffers we added a Prewitt edge detection filter [12], as it is
shown in Fig. 3. Edge detection configuration on the FPGA
HAT processes incoming data from the first FIFO buffer and
stores them in the second buffer. FIFO buffers have different
data lengths on their inputs and their outputs. Since the edge
detection algorithm processes bytes instead of 16-bit short

integer values, half of the data are processed during write
cycles and the other half during read cycles.

On the Raspberry Pi side, a CSI V2 camera was used to
capture a greyscale video feed at resolution of 512x512
pixels. Each frame was pushed to the FPGA HAT in order to
apply the edge detection filter. The Raspberry Pi V2 camera
can capture up to 90fps at this resolution.

Finally, the processed frame was sent back to the
Raspberry Pi and the frame was viewed in a window. Image
results are depicted in Fig. 4. and in Fig. 5. At this point, the
actual data transfer rate has dropped significantly down to 8
Mbytes/sec or close to 30 frames per second on a Raspberry
Pi 4 with 8Gbytes of RAM. This is because the Raspberry Pi
uses an embedded Linux (Raspbian) which is a non Real-time
operating system. It adds some delay to the transmission of
the data through its GPIO, but most importantly because of
how Raspberry Pi captures the video feed. The Raspberry Pi
has to pause the execution of the main data transmission
program, to capture a frame from the camera and store it on a
buffer.

For each captured frame the delay is approximately
13.5ms per frame and up to 25ms as shown in Fig. 6. At 30
frames per second this translates to no data being transmitted
by the FPGA HAT up to 75% of the time.

Fig. 2. Timing diagram.

Fig. 3. Data Flow diagram on the FPGA configuration

Fig. 4. Input frame. Fig. 5. Frame after edge detection
filter.

Fig. 6. Transmission gap between frames.

To overcome this delay, a multithreaded program was
developed. In this program, one execution thread constantly
captures frames and stores them into a buffer. Another
thread transmits the frame data to the FPGA HAT and
receives data back after the edge detection filter is applied.
At the end, a third thread shows the processed frame on
screen, as it is depicted in Fig. 7.

By using this technique, the actual frame rate has been
increased to 170 fps which is a significant speed-up. This
change is also visible on the oscilloscope view, where there
is no delay between frames transmission, as it is shown in
Fig. 8. As mentioned before, the Raspberry Pi camera can
capture up to 90 frames per second, meaning excess frames
are processed twice.

A similar C++ program that uses OpenCV to apply the
same edge detection filter to the video feed can only achieve
48 frames per second, at the same 512x512 video feed
resolution. This means that in the proposed architecture, the
acceleration is about 350% for this task.

IV. SYSTEM EVALUATION

In this Section, the evaluation of the system in terms of
power consumption and speed is presented. A test setup
using a Raspberry Pi 4 with 8GBytes RAM and a multimeter
connected in series was created. With the aid of the
multimeter, we were able to measure min, max and mean
current values and to estimate power consumption in various
operation states. VNC was used in order to be connected
remotely with the Raspberry Pi.

The first measurements concern the RPi’s operation with
and without the additional processing load which is added
when the edge detection task runs. In Table I, as IDLE is

represented the state in which the Raspberry Pi has just
finished the boot process. The state in which we have opened
a VNC connection with RPi is referred as VNC. Finally, the
state when the C++ program executes edge detection using
the OpenCV library is indicated as OPENCV.

TABLE I. INITIAL MEASUREMENTS (FPGA HAT DETACHED).

Current
consumption

(in A)

Raspberry Pi without the FPGA HAT attached

MIN AVERAGE MAX

IDLE 0.46 0.51 0.54

VNC 0.48 0.52 0.59

OPENCV 0.8 0.9 1.04

Subsequently, the FPGA HAT was attached and the same
measurements were done again. Moreover, two more
measurements took place. In these two measurements, FPGA
HAT applied edge detection. In the first one, the single
threaded program was executed in the Raspberry Pi. The
multi threaded program ran in the second one. The
corresponding measurements are presented in Table II.

TABLE II. MEASUREMENTS WITH THE FPGA HAT ATTACHED.

Current
consumption (in A)

Raspberry Pi with the FPGA HAT attached

MIN AVERAGE MAX

IDLE 0.51 0.52 0.57

VNC 0.51 0.56 0.6

OPENCV 0.81 0.92 1.1

FPGA (single
thread)

0.82 0.82 0.84

FPGA (multi thread) 0.81 1.12 1.2

Table III presents the performance of the system in each
case. As it can be seen, when the multi threaded C++ program
is executed in conjunction with the FPGA HAT operation, the
system performance increases. The acceleration in
comparison with single threaded program is more than 500%,
while in comparison with the program that uses OpenCV
library is more than 350%.

TABLE III. PERFORMANCE MEASUREMENTS.

Frames per second for each process
Raspberry Pi 4

FPS (Best)

OPENCV 48

FPGA (single thread) 32.4

FPGA (multi thread) 172

The evaluation continued in terms of CPU usage, CPU
temperature and overall power consumption. The LXTask
system monitor was used to register CPU usage. Furthermore,
vcgencmd utility was installed to measure CPU temperature,
while the power consumption was calculated using the
attached multimeter. Experimental results are quoted in Table
IV.

By adopting the multi threaded program, the overall
consumption is about 20% more in comparison with the
process that uses OpenCV library to apply edge detection.
The FPGA HAT consumes the extra power. However, the
RPi’s CPU temperature appears lower (64oC vs 71oC)
regardless of the fact that CPU usage is almost twice as high
(90% vs 46%). This is attributed to that no intensive functions

Fig. 7. Output view of the multithreaded process.

Fig. 8. Data exchange in the multithreaded program.

are applied to the Raspberry Pi, since edge detection has
been implemented in the FPGA HAT. This leads to a lower
wear in the long run.

TABLE IV. EVALUATION IN TERMS OF CPU USAGE, TEMPERATURE
AND POWER CONSUMPTION.

Power consumption in
(A) Amp

Raspberry Pi with the FPGA HAT
attached

CPU
usage time

(%)

Temperature
(oC)

Power
consumption

(W)

IDLE 3 55 2.6

VNC 8 55 2.8

OPENCV 46 71 4.6

FPGA (single thread) 33 62 4.1

FPGA (multi thread) 90 64 5.6

The single threaded process can be used when high
speed frame rate is not required and even though it performs
35% slower than OpenCV, the system can run cooler, with
lower power requirements and less CPU usage. It performs
better in cases where the Raspberry Pi – FPGA combination
is powered by batteries and it can offer lower power
consumption which translates to longer battery runtime and
fewer charging cycles for the same amount of work.

Lastly, the following table (Table V) highlights the cost
increase of the setup when using an FPGA HAT along with
the Raspberry Pi.

TABLE V. COST INCREASE IN REGARD TO THE CYCLONE FPGA IC
USED.

Cyclone FPGA on
HAT Total Cost

Total cost with a
RPI4 / 4G

Cost
increase

(%)

10cl006 € 50.00 € 100.00 200%

10cl010 € 65.00 € 115.00 230%

10cl016 € 80.00 € 130.00 260%

10cl025 € 100.00 € 150.00 300%

Therefore, the increase in cost (almost 300% when
adopting the most expensive pin-to-pin FPGA of the same
family) is lower than the performance gain (which is close to
350%) compared to the Raspberry Pi stand-alone operation.

V. CONCLUSION

In this paper, we accelerate image image processing
algorithms using a custom built system that includes an
FPGA-Raspberry Pi combination. A fast 16-bit parallel
protocol was implemented and performance was optimized
by using multithread techniques to outperform solutions that

use software only implementations like OpenCV. The
proposed system achieved 350% acceleration of an edge
detector. The system can be used in robotic vision
applications where the FPGA undertakes heavy processing
load and the Raspberry Pi can run ROS and apply higher-
level operations.

Further work includes the design of a TPU (tensor
processing unit) configuration for the FPGA HAT that can
benefit from the fast 16-bit parallel protocol and accelerate
tensorflow calculations on the Raspberry Pi.

REFERENCES

[1] J. N. Lygouras, K. A. Lalakos, and P. G. Tsalides, ‘THETIS: an
underwater remotely operated vehicle for water pollution
measurements’, Microprocess. Microsyst., vol. 22, no. 5, pp. 227–237,
Sep. 1998, doi: 10.1016/S0141-9331(98)00083-0.

[2] ‘TurtleBot’. https://www.robotis.us/turtlebot/ (accessed Feb. 10, 2022).

[3] G. Karalekas, S. Vologiannidis, and J. Kalomiros, ‘EUROPA: A Case
Study for Teaching Sensors, Data Acquisition and Robotics via a
ROS-Based Educational Robot’, Sensors, vol. 20, no. 9, 2020, doi:
10.3390/s20092469.

[4] ‘Astro Pi’. https://astro-pi.org/ (accessed Feb. 10, 2022).

[5] H. Gao et al., ‘cuFSDAF: An Enhanced Flexible Spatiotemporal Data
Fusion Algorithm Parallelized Using Graphics Processing Units’,
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022, doi:
10.1109/TGRS.2021.3080384.

[6] J. A. Kalomiros and J. Lygouras, ‘Design and evaluation of a
hardware/software FPGA-based system for fast image processing’,
Microprocess. Microsyst., vol. 32, no. 2, pp. 95–106, Mar. 2008, doi:
10.1016/j.micpro.2007.09.001.

[7] T. K. Maiti, ‘ROS on ARM Processor Embedded with FPGA for
Improvement of Robotic Computing’, in 2021 International
Symposium on Devices, Circuits and Systems (ISDCS), Mar. 2021,
pp. 1–4. doi: 10.1109/ISDCS52006.2021.9397897.

[8] Z. Dave, S. Dhote, P. Charjan, J. Joshi, and G. Gore, ‘Article:
Reconfigurable Image Processor using an FPGA-Raspberry pi
Interface’, IJCA Proc. Int. Conf. Comput. Technol., vol. ICCT 2015,
no. 5, pp. 11–15, Sep. 2015.

[9] S. Kumar, M. Shah, and A. Singh, ‘FPGA – Raspberry pi Interface for
low cost IoT based image processing’, Invertis J. Sci. Technol., vol.
10, p. 219, Jan. 2017, doi: 10.5958/2454-762X.2017.00034.8.

[10] T. Wang, ‘Development of an FPGA and MCU based Stack-able
Processing platform incorporated with on-board compute module for
Real-time processing applications’, Memorial University of
Newfoundland, 2017.

[11] ‘OpenOCD - Debian Wiki’. https://wiki.debian.org/OpenOCD
(accessed Jan. 30, 2022).

[12] J. V. Vourvoulakis, J. Lygouras, and J. A. Kalomiros, ‘Acceleration of
Image Processing Algorithms Using Minimal Resources of Custom
Reconfigurable Hardware’, in 2012 16th Panhellenic Conference on
Informatics, 2012, pp. 68–73. doi: 10.1109/PCi.2012.11.

