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Abstract—In this paper we elaborate and verify a data-driven
modelling approach, pertaining to the stochastic trajectory of
the memristance upon the application of pulses. Our proposed
approach is to model the memristor’s behaviour as a time-
homogeneous Markov chain. We introduce a simplified method
that estimates the states and the state transition probabilities
of the model from device measurements. We show that such a
memristor model, generally corresponds to an absorbing Markov
chain, the physical implications of which are also discussed.
We apply this modelling methodology to real-world Pt/TiO2/Pt
memristors and present results that validate its effectiveness in
capturing the stochastic features of these devices over various
timescales.

I. INTRODUCTION

In this paper we elaborate and verify a modelling approach
introduced previously, pertaining to the stochastic features of
memristors. Specifically, we are interested in modelling the
stochastic response exhibited by a memristor over a range
of timescales, in response to a pulsed input. Figure 1 shows
the measured response of a memristor to a train of voltage
pulses. The long-term (stable) trend of the conductance is
clearly evident. Furthermore, the inset of figure 1 shows
a zoomed-in section, elaborating the stochastic and volatile
nature of the trajectory over time-scales much shorter than
the developing conductance trend. A model is required to
capture the stochastic features of all key timescales of interest.
Previously, our proposed approach in [1] was to model the

memristor’s behaviour using (1), which is effectively a Hidden
Markov Model:

ds

dt
=

(
fu(u, s)−

s− αN(t)

τ
+ σNη(t)

)
fw(s) (1)

V = R(s, u)I (2)

s is the state variable, fu(s, t) is the input sensitivity
function and fw(s, t) is the window function. η(t) is a white-
noise contribution and N(t) is another stochastic process
discussed below. The actual resistance of the device is related
to the state variable via another function R(s, u).

The dynamics described by (1) for a fixed value of αN(t),
pertain mainly to short-term characteristics of the memristor.
These include a volatile change in conductance, followed by
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Fig. 1. Stochastic response of the memristor under constant pulsed stimulus.
Every 25th pulse is a 500us wide voltage stimulus of amplitude +0.9V (200
total write pulses above). All other pulses are a read pulse. A trend of stable
conductance change is visible over long timescales. The inset shows a zoomed-
in section, where a stochastic meta-stable response that occurs over much
shorter timescales is also evident.

relaxation towards a stable conductance state with a character-
istic time τ . These dynamics typically evolve over timescales
that are of the order of microseconds to milliseconds and are
referred to as the short-term or the fast timescale response.
The long-term or slow timescale evolution of the (stable)
conductance value on the other hand, is governed by the
dynamics of the stochastic process N(t) that evolves in the
order of milliseconds to seconds. N(t) is a random process
described by a discrete state-time Markov chain. The inclusion
of N(t) was inspired by imposing a plausible pseudo-energy
landscape, such as figure 2, on the state-space. Therefore,
in (1), N(t) served the purpose of shifting the minima of
the parabolic landscape over time. Previously, the transition
probabilities of N(t) were defined as follows [1]:

p+1(t) = Prob
(
X+ ≤ s(t)− αN(t)

)
(3)

p−1(t) = Prob
(
X− ≥ s(t)− αN(t)

)
(4)

In this formulation the short-term dynamics and long-term
dynamics are coupled. This is because the time dependant
transition probabilities of the discrete Markov chain and hence
the characteristics of the long-term memristor response are



computed by imagining energy barriers around the instanta-
neous value of s(t). Although such a derivation using energy
barriers is intuitively appealing and can reproduce the quali-
tative observations of memristor plasticity, it remains difficult
to perform a quantitative fit between the long-term behaviour
of the model and measurements of the actual memristors. This
is because the state transition probabilities of N(t) are time-
inhomogeneous and implicitly linked to the complex non-
linear sensitivity function fu(s, t) and the window function
fw(s, t).

In this paper, we introduce a few new simplifications.
Experience with actual devices has shown, that a description
as elaborate as (1) may not always be necessary. In many
use cases, it suffices to simulate the dynamics more coarsely,
using only a discrete state-time Markov process such as N(t).
This provides a good fit to the measured data. Furthermore,
we introduce a simplified method that estimates these discrete
states and corresponding time-homogeneous state transition
probabilities of the Markov chain, directly from measured
device trajectories. Therefore, the remaining part of this paper
will elaborate the premise of our approximations and discuss
the construction of such a Markov chain. Furthermore, any
physical device implications that can be inferred from the
constructed model will also be explored.

II. MATHEMATICAL FORMULATION OF THE MODEL

As the premise of our fitting procedure revolves around ex-
tracting the Markov chains parameters from measured device
data, we will now work directly in terms of the resistance of
the device R(N(t)), instead of the conceptional internal state-
variable N(t). This is simply because we are only able to
measure R(N(t)) directly and not N(t). Thus, the modelling
procedure that follows aims to approximate the continuous
stochastic process R(N(t)) as a homogeneous discrete state-
time Markov chain Rk.

We seek to appropriately discretise R(N(t)) and then deter-
mine the corresponding one-step transition probability matrix
P = (pjk). Each element of the matrix P can be interpreted
as the following conditional probability:

pjk = Prob(Rm+1 = k|Rm = j) (5)

Therefore, p[n] the row vector of probability distribution
of state, at time-step n, can be computed from the initial
probability distribution of state p[0] as:

p[n] = p[0]Pn (6)

We will now discuss how to discretise the state-space and
estimate the matrix P from measured data.

A. Computing discrete states from data

Given a measured resistance trajectory
R(t) ∈ (Rmin, Rmax), we partition this continuous state-
space Ω into a finite number M of uniformly sized
disjoint sets {Ω1,Ω2,Ω3..ΩM}. If at the sampled time-step
R(t = kTs) ∈ Ωi, then the discrete Markov chain Rk is said
to be in state i. The discrete resistance associated with set Ωi

 

Fig. 2. A) an exemplar landscape under no bias. B) distorted landscape
under bias. C) Volatility and plasticity can be seen as a gradual shift in the
underlying landscape that confines state trajectory.

is equal to (Rmin+ i∗ Rmax−Rmin

M ). Using this procedure we
attain a discrete-state trajectory for every measured trajectory
R(t), at a chosen time resolution. The time resolution is
either equal to the sample rate of the original data or is scaled
by an additional decimation factor.

B. Estimating the transition probability matrix

At the conclusion of the aforementioned procedure, we have
a sequence of states (resistances) R0, R1, R2..Rk from which
transition probabilities can be estimated. The maximum like-
lihood estimator of observing a sequence, under the Markov
chain model can be shown to be [2]:

pjk =
Njk∑M

m=1 Njm

(7)

Where Njk is the number of observed transitions from state
j to state k.

C. Characteristics of the transition probability matrix and the
discrete state-space

In this section we will elaborate the physical interpretation
and structure of our model’s probability transition matrix and
discrete state-space. We will also discuss how it links to the
energy-landscape picture shown in figure 2.

We begin by considering the simpler case of a purely
deterministic model such as [3]. In such a model, a given
input stimulus and an initial condition specifies a unique deter-
ministic trajectory in the state-space R(t), towards a terminal
state. Upon reaching the terminal state, no further change in
state occurs despite the application of input. In practice, these
terminal states are defined using suitable window functions.



Furthermore, all other points in the trajectory can be classified
as transient states, as the system is bound to exit them at some
point in time.

Our stochastic model and its aforementioned construction,
can also be understood in a very similar fashion. After approx-
imating the matrix P using (7), we can group the states into a
set Tk of communicating transient states. In general there will
be one or more such sets {T1, T2..TL}. Similarly the remaining
states will be grouped into a single set C of communicating
absorbing states. States grouped within any such set can be
analysed as an independent Markov sub-chain. In other words,
the transition probability matrix P will be reducible and can
be written in the form of an absorbing Markov chain [4]:

P = (pjk) =

C T[ ]
C S1 0
T R21 Q2

(8)

III. MODEL DECOMPOSITION

The irreducible submatrix S1, identified in (8), represents
a Markov chain on the set C of absorbing states and hence
describes the limiting (i.e. t → ∞) behaviour of our model.
We use this to explore the nature of long-term stochastic
approximations implied by our model. For example, if the
submatrix S1 is also aperiodic, then the Markov sub-chain
on the set C will be ergodic. Thus, our model approximates
the limiting behaviour of the memristor, under constant pulsed
stimulus, as an ergodic process with a corresponding limiting
distribution. Similar analysis can be applied to the submatrix
Q2 which describes the stochastic dynamics within the sets
of transient states T = ∪iTi. These sets of states describe the
stochastic transient behaviour of the memristor. Q2 in gen-
eral, will be reducible into many smaller irreducible Markov
sub-chains, one for each set Ti of communicating transient
states. Therefore, the transient behaviour of the model, within
a specified range of simulation time, can be analysed by
examining the behaviour of the relevant Markov sub-chains
and the transition characteristics between them.

In summary, the construction of the matrix P is equivalent
to partitioning the state space, by grouping communicating
states into one or more transient sets and a single absorbing
set. On each one of these irreducible sets, we define time-
homogeneous Markovian dynamics. Furthermore, if the dy-
namics of a set of communicating states are ergodic, the state-
trajectory when confined in that set, can be thought of as being
confined in some equivalent energy landscape [5] such as such
as L1 and L2 shown in figure 2. Hence, in this approximation
we maintain the existence of some time-dependant (shifting)
energy landscape as proposed in [1], however the exact details
of this are not elaborated. Instead, these details are estimated
directly from actual device measurements and are therefore
contained within the very structure of the probability transition
matrix. The aforementioned decomposition is depicted in
figure 3.

Fig. 3. The proposed stochastic process Rk , is defined by partitioning the
continuous state space Ω into discrete states Ωk and then further grouping
these discrete states into sets Ti of transient states and a set C of absorbing
states. Dynamics within each set are Markovian and can also be interpreted
as transitions in an equivalent pseudo-energy landscape.

IV. RESULTS

We begin this section with a discussion on how we in-
tend to model a single device, over a range of different
operating conditions. Our experiments have shown that our
memristors, under a train of pulses, exhibit behaviour that is
always qualitatively similar to the trajectory shown in figure
1. However, depending on the nature of the input pulses,
the characteristic timescale of the transient phenomena and
the limiting quasi-stationary distribution of states can change.
Therefore, presently, we propose a protocol where such a
model (i.e. a matrix P) is constructed, for each different
stimulus condition of interest.

We now apply this model to an actual device and show the
results of the model for two different stimulus. Both examples
below utilise the same device, consisting of a Pt/TiO2/Pt
material stack-up as described in [6].

A. Positive Stimulus:

In this example, we construct a model for the response
of the memristor to 500us wide +0.9V pulses, applied every
112.5ms. All other pulses are read pulses. Following the
aforementioned fitting procedure yields P ∈ R50×50. An
instance of the resulting model is simulated and superimposed
on the measured trajectory in figure 4.

Decomposing P according to (8), we find that S1 ∈ R13×13

and Q2 ∈ R37×37. Therefore, the quasi-stationary distributing
of the memristor, under this stimulus, is estimated using
only 13 states. Similarly, 37 states are used to capture the
transient behaviour of the memristor. For example, a subset
of 7 communicating transient states model the plateauing
phenomena seen in the data, approximately between pulse 50
to pulse 1000.

Figure 5 shows a comparison between the stationary dis-
tribution of S1 (and hence P), and the distribution of the
measured data from pulse 1600 on-wards (approximately
ignoring the transient behaviour).
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Fig. 4. Stochastic response of the memristor to 200 write pulses and a
realisation of its model, starting from the same initial condition. Every 25th
pulse is 500us wide +0.9V write pulse, all other pulses are +0.5V read pulses.
The model consists of 50 total states grouped into 37 transient states and 13
absorbing states.

Fig. 5. A comparison between the limiting distribution of the model and the
distribution of measured data of figure 4 from pulse 1600 onwards.

B. Negative Stimulus:

In this example, we construct a model for the response of the
memristor to 500us wide -1.1V pulses, applied every 112.5ms.
These pulses were applied immediately at the conclusion
of the previous experiment. An instance of the resulting 60
state model is simulated and superimposed on the measured
trajectory in figure 6. Figure 7 shows a comparison between
the stationary distribution of P, and the distribution of the
measured data from pulse 1100 on-wards.

V. CONCLUSION

In this paper we have presented a model suitable for
capturing the stochastic features of memristive devices over
multiple different timescales. We have shown that the complex
switching and saturating behaviour of memristive devices, can
be described as probabilistic transitions between finite sets
of discrete states. This approach is not only a more accurate
description of these devices, but may be more computationally
efficient than existing deterministic approaches, as it does not
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Fig. 6. Stochastic response of the memristor to 230 write pulses and a
realisation of its model, starting from the same initial condition. Every 25th
pulse is 500us wide -1.1V write pulse all other pulses are a real pulse. The
model consists of 60 total states grouped into 19 transient states and 41
absorbing states.

Fig. 7. A comparison between the limiting distribution of the model and the
distribution of measured data of figure 6 from pulse 1100 onwards.

require the use of non-linear window functions. The ability
to efficiently capture these stochastic features is critical for
realistic simulations of memristive applications.
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