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Abstract—Unconventional circuits with built-in memory and
computing functionalities are becoming the cornerstones of ar-
tificial intelligence (AI) at the edge. In the currently deployed
systems, sensing and computing occur in separate physical
locations, imposing a vast amount of data shuttling between the
sensor module and the cloud-computing platforms. Regarding
the acceleration of image processing at the edge, in this work, a
memristive computing circuit has been designed. By exploiting
the non-linear behavior and memory capabilities of memristor
devices, a memristive circuit, capable of tracking the shifting
of an image is proposed. The presented circuit design can be
also combined with an array of sensors, aiming to implement a
discrete image tracking module.

Index Terms—In-memory computing, memristive circuit, im-
age processing, edge computing

I. INTRODUCTION

While today’s world is characterized by rapid and vivid
changes, many new technologies have appeared in the past
few years. It is undeniable that the past decade has introduced
several tech trends that have become commonplace while still
affecting how we live in major ways. From smart driving to
elderly fall detection, there are many breathtaking applications
that target to enhance the modern lifestyle and to assist in ev-
eryday living. The common ground between such applications
is usually derived from the computer vision domain where
among other processes, the shifting between image frames is
required to be tracked.

Autonomous and smart driving has become a top research
trend while cars appears to have more advanced sensors than
ever. Characteristics like road and lane detection have been
introduced and in combination with deep learning they aspire
to change the way we drive [1]. Some hardware based neuro-
morphic proposals have been appeared in literature [2] paving
the way of the new autonomous driving era. On the same
direction, object detection seems to be a really important task
for vehicle and pedestrian detection, as well as in the fields
of human—computer interaction and video surveillance [3].
Proposed hardware implementations leveraging novel devices
has been also proposed in order to deal with near sensor
processing tasks [4].

On the other hand, falling is considered among the most
serious hazards to the elderly and, thus, it has piqued the
interest of academics and has consistently been one of the most
important research topics. Alongside with the technological
improvements, falls have been extensively studied by scientific
community as it is a hotspot for everyday elderly health-care
[5]. Currently, many sensors are used to detect falls, with the
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Fig. 1. Stanford memristor model I — V' characteristic fitted on fabricated
RRAM devices of [8]

sensor-fusion approach being one new trend to increase system
performance [6]. However, there is no integrated system to
take into account the fall risk and detect falls using camera-
assisted observations [7].

Nevertheless, there are many challenges on the way to im-
plement such technologies with the greatest to be the physical
limitations. In this context, researchers are attempting to utilize
the potential of future and emergent nano-device technologies
and unconventional computing approaches inspired by nature
in the search for high-density, low-power, high-speed comput-
ing systems for the post-CMOS era. Quite recently, a unique
nano-device known as the Memristor has been investigated and
is considered a viable candidate for significantly improving
the processing and storage capacities of developing computer
systems. Memristor is a two-terminal nano-scale electronic
device that can adapt its electrical conductance in response
to the applied voltage on its terminals, while also retaining
its conductance value as long as a voltage is not applied,
constituting a non volatile memory element [9]. Its potential
applications are under investigation, in digital, analog, and
mixed signal domains [10]-[19], while it is considered as a
good fit for computer vision applications [20]-[22].

There are various memristive approaches for dealing with
image processing applications [23], [24]. Expanding the ca-
pabilities of memristive systems, in this work, a memristor-
based circuit is proposed being able to track the image shifting
between two images. Initially, the designed system converts
the RGB image input stream to gray-scale, then to binary and
finally, through the calculation of various features, determines
the direction of image shifting.
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Fig. 2. (a) Pixel processing system. (b) Vertical and (c) horizontal feature extraction systems

II. PROPOSED MEMRISTIVE SYSTEM

In this Section, the proposed memristive system enabling
image shifting tracking is described. As it is expected, three
input signals are sent for each pixel of the image; one for red,
one for green and one for blue color following the RGB color
coding. The voltage values that correspond to the intensity
of each color range between 0 and 2.55V in order to have
an analog equivalent with the digital 8-bit representation of
color values, but, more significantly, to supply enough voltage
amplitude in order to be able to provoke a change in the
resistance of the memristors.

The functionality of the designed memristive circuit can
be divided to three operations. Firstly, the designed system
converts the RGB image input stream to gray-scale exploiting
the Millman’s theorem; then by utilizing the memristor non-
linear threshold switching dynamics, the image is converted
in monochrome. Afterwards, proper input signals are applied
to the memristors in order to extract the required features and
determine the shifting between two frames.

To design the proposed memristive circuit, the Stanford
memristor model has been utilized [25], which has been fitted
to fabricated RRAM devices [8]. It is a physics-based RRAM
device model with compact equation set, developed in Verilog-
A that enables the large scale circuit simulations. The [ — V'
response of the model is presented in Fig. 1. The memristor
switches between 3k(2 and 3M(2 resistance with 1.5V SET
and —1V RESET threshold, accordingly.

In the proposed RRAM device model the switching is
attributed to the formation of a filament which height and
width is controlled through the internal variables z and w,
respectively. The internal variables equations are the following:

dx/dt = af exp (— (E — aZeFE) /kgT) (1)

dw/dt = (Aw + Aw?/2w) fexp (— (E — aZeE) /kgT)
2
The current of device is calculated through the filament and
hopping currents and is provided as follows:

ICF =7Tw2VCF/4p(£CQ —.Z‘) (3)

Inop = Iy (mw?/4) exp (—z/z7) sinh (Vyap/Vr) (4

Further details regarding the model and the corresponding
parameters’ selection can be examined in [25].

A. Pixel processing

In order to determine the proper weights for each pixel of
the image, the input signals should be combined following the
Millman’s theorem. As each color has different wave lengths
and the eye perceives them differently, each color should have
a different resistance (Rg, Rg, RB).

More specifically, the human tri-chromatic color vision is
considered for determining the respective resistances as peak
sensitivities of each color of different wavelength are not
evenly distributed across the visual spectrum [26]. This leads
to a better division of red and green colors against other hues.

The respective resistances have been set as follows:

Rp = 334Q, Rg = 170Q, Rp = 877Q2 5)
Thus, this leads to the final weight-averaged signal:

Ve — VRM 'GR+VG717.,‘ ~GGJrVBw -Gp
Fig = Gr+Gg+Gp (6)
=0.299 - VRM + 0.587 - VGM +0.114 - VBi,j

This signal, which corresponds to the gray-scale pixel value,
is applied to the top electrode of the memristor via a buffer
(VrEg, ;) to update the weight of the pixel as it can be seen in
Fig. 2(a). In order to affect the switching threshold according
to the required application, a dynamic DC voltage (VpEg)
is applied on the bottom electrode of the memristor. This
DC voltage provides the system with the ability to tune the
sensitivity of the memristors to the gray-scale values. For the
correct operation of the proposed application, this voltage has
been set to —100mV'.

More specifically, if Vg, ;-VpEg is higher than the memris-
tor’s SET voltage threshold, then the device switches to low
resistance state, which corresponds to a white pixel. On the
contrary if this voltage is lower, then the memristor remains
to high resistance state, corresponding to a black pixel. This
processing occurs for every pixel, converting the gray-scale
image to a binary one. Consequently, the binary instance of
the image is stored in the resistance of the memristors which
are arranged in a crossbar-like configuration.
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Fig. 3. Voltage from RGB sources (Vr, Vg, Vp) resulting to different final weight-averaged signals (V) and to different memristor resistances (M) during

the activation of the pixel processing phase

B. Features extraction

The image shifting takes place in two different axes; i.e.,
horizontal and vertical. Thus, two different features should be
extracted from each image, one for horizontal shifting (V},) and
one for vertical one (V,,). By subtracting these values from one
image to another, the pixel shifting can be easily defined.

In order to get these features, the memristors’ top electrode
is triggered with the respective row or column voltage analogy
while the bottom electrode is common for all memristors. The
voltage of this common node is considered as the feature’s
value. The voltage analogy is considered as discrete voltage
levels with equally increasing voltage amplitude for each
consecutive row or column. Thus, three different voltage levels
V1, Vo, V3) are presented in the example of Figs. 2(b,c) to
differentiate the three distinct rows or columns, respectively.

Each feature represents in which row or column the white
color of the image converges, depicting the weighted average
of the white color. Considering that image shifting slightly
changes the image position, this leads the white average to
get transferred to the corresponding position. By identifying
this shifting in both vertical and horizontal axis, the overall
image shifting can be determined.

III. RESULTS AND DISCUSSION

To evaluate the proper operation of the circuit, a small 3 x 3
image is considered in Fig. 4(a) for readability reasons. All
possible shifting options are considered in Fig. 4(b-i) and
the results are presented in Table I. In particular, according
to which row or column the yellow pixel is, the respective
feature (V;, V) is settled down to a respective voltage level,
i.e. 66.76mV for first, 99.29mV for second and 131.97mV
for third one, respectively. Thus, different but discrete voltage
differences can be spotted that lead to different shifting levels.

Regarding the operation of the pixel processing procedure,
it can be spotted on Fig. 3 for the two different pixel colors of
the examples (i.e. gray and yellow). For gray pixel (Fig. 3(a)),
the voltages of the respective RGB levels are 0.7V matched
to the 8-bit digital equivalent color level of 70. This leads the
respective final applied signal to the memristor (V) at the
same level resulting to an insignificant change to memristor’s
resistance M. On the contrary, the yellow pixel (Fig. 3(b)) has
a red level of 240 and a green of 200 leading to a much higher

final weight-averaged voltage of 1.97V after the activation of
the pixel processing phase resulting to a significant change of
memristor’s resistance by 3 orders of magnitude.

The results are following the theoretical background proving
the proper operation of the circuit. By examining the image
frames in Fig. 4 and the vertical and horizontal shifting values
that emerge through the voltage differences of Table I, it can
be clearly observed that the circuit calculates correctly the
overall shifting of the small image that is proposed here for
reference and readability reasons.

IV. CONCLUSIONS

In this work, a memristive system is proposed to track
the image shifting between different frames. The proposed
system processes the input stream of images converting them
from RGB to gray-scale, followed by a conversion to binary
image by exploiting the non-linear switching dynamics of the
memristors. Finally, the stored binary image is utilized to
extract and compare the features for horizontal and vertical
axis in order to determine the shifting. Examples of all possible
shifting combinations have been presented demonstrating the
circuit’s correct functionality. As future work, memristor vari-
ability effect to system performance will be investigated also in
terms of area and performance and when compared to similar
approaches. Finally, a comprehensive system combined with
an image sensor array will be designed focusing on elderly fall,
while real data will be analyzed to adjust the system properties
for elderly needs.
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