
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

All-memristive Spiking Neural Network Circuit
Simulator

Vladimir Vincan
Dept. of Power, Electronic

and Telecommunication

Engineering
Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia
vladimirvincan@uns.ac.rs

Jovana Zoranovic
Dept. of Power, Electronic

and Telecommunication

Engineering
Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia
jzoranovic@uns.ac.rs

Natasa Samardzic
Dept. of Power, Electronic

and Telecommunication

Engineering
Faculty of Technical Sciences,

University of Novi Sad

Novi Sad, Serbia
nsamardzic@uns.ac.rs

Stanisa Dautovic
Dept. of Power, Electronic

and Telecommunication

Engineering
Faculty of Technical Sciences

University of Novi Sad

Novi Sad, Serbia
dautovic@uns.ac.rs

Abstract— In this paper we present a circuit-level simulation

test bed for an all-memristive spiking neural network (MSNN),

composed of synapses and leaky integrate-and-fire (LIF)

neuron circuits. As recently proposed, an all-memristive neural

network can be designed using volatile diffusion memristors as

part of the LIF neuron, and non-volatile drift memristors as

synaptic elements. The cognitive performances of our MSNN

are demonstrated by the implementation of the spike timing

dependent plasticity (STDP) learning rule. Starting from a

circuit-level memristive neuron model which incorporates

volatility, and a synaptic memristive array, a simple MSNN

circuit simulator is designed and its performances are discussed.

Keywords— spiking neural networks, memristors, volatility,

LTspice, Simscape

I. INTRODUCTION

Memristive spiking neural networks (MSNNs) are a
specific type of spiking neural networks (SNNs) that utilize
unique properties of memristive devices: computational and
memory capability, stochasticity, multi-level states, nanoscale
size, etc. Various memristive devices are seen as an enabling
technology for different energy efficient neuromorphic
architectures, especially in the future edge-AI and 5G/6G
applications.

Depending on the spiking neuron model type, memristors
that model neurons have to fulfil additional requirements. For
example, the Hodgkin-Huxley neuron model requires
memristors to have the local activity property [1]. Concerning
synapses, a common feature of the synaptic memristor is non-
volatility [2], [3] which enables the realization of synaptic
plasticity.

Various MSNN architectures have been presented so far
[4], including all-memristive neural networks with leaky
integrate-and-fire (LIF) [5] and integrate and fire (IF) [6]
memristive neuron circuits. Nevertheless, the LIF neuron
model remains the most popular, as it allows a satisfactory
trade-off between device complexity and the ability to
replicate biological neuron dynamics [7].

In this paper we present circuit-based simulations of all-
memristive spiking neural networks with the memristive LIF
neuron model. First, we demonstrate that the modified SPICE
model of a memristor [8], [9] with four subcircuit modules
and three state variables can be used to mimic synaptic
activity. The spike timing dependent plasticity (STDP)
learning rule has been demonstrated on a single synaptic
memristor in LTspice and Simscape/Simulink simulators.
Upon demonstrating that the same memristor model can be
used to design the leaky integrate-and-fire neuron when
operating in the volatile regime [9], we have realized simple

2×2 and 5×5 memristor synaptic arrays with the ability to
perform unsupervised synaptic weight modification.

II. SIMULATION OF MEMRISTIVE ARRAY IN LTSPICE

Starting from the SPICE model of a memristor with three
state variables [8] which was modified with a new window
function ����� [9], [10], we have adjusted subcircuit model
parameters of the memristor in order to achieve non-volatile
dynamics. The memristor model has been implemented with
the following equations:

������� =
��� − ����� ∙ � + ���� = �������� ; �1�

�� ���� = �� − � − ��� ; �2�

�� ���� = ��; �3�

�� ���� = ���� − ��� ; �4�

�� = ���� ∙ ! ∙ �����; �5�

�� = #���� ∙ ! ∙ �����, � > &')*� ���� > 0���� ∙ ! ∙ �����, � < &�)*� ���� < 00, -./- �6�

����� = 1 − �2� − 1�11 − �2� − 1�1 + �2� − 1�1� ; �7�

! = 34 ∙ ���51 , �8�

where ���� , ���� and ���� are the resistance, voltage and
current passing through the memristor; x, y and z are internal
state variables which can be represented as voltages of the
subcircuits; µv is the dopant mobility; D is the thickness of
the active layer; &' and &� are threshold parameters for non-

volatile resistance switching. Parameters of the neuron and
synaptic memristors are shown in Table I. A larger value of
capacitance Cx of the synaptic memristor has been set to 5 F,
as it provides higher values of the x-module time constant
[11], enabling the non-volatile state transition. It is worth
mentioning that the values of resistances and capacitors in
these submodules do not have physical interpretation, they
are used solely to realize coupled differential equations of
memristors [11]. Additionally, large capacitance values have
already been demonstrated in Biolek’s memristor modeling
paper [12]. The LTspice code used for modeling the
memristors in neurons and memristive synapses is given in
[9] and [13].

TABLE I. MEMRISTOR MODEL PARAMETERS

Parameter
Neuron

model

Synapse

model

Ron 1 Ω 1 Ω

Roff 100 kΩ 100 kΩ

µv 100 pm2s-1V-1 100 pm2s-1V-1

D 10 nm 10 nm

qp 100 nV 100 nV

qn −80 nV −80 nV

Cx 5 F 0.5 F

Rx 1 Ω 1 Ω

Cy 1 F 1 F

Cz 1 F 1 F

Rz 0.1 Ω 0.1 Ω

The memristor, as part of the LIF neuron, allows gradual
conductance modulation due to memductance dependence on
the state variable x, which cannot be realized with a simple
RC circuit in the LIF model.

The STDP learning rule has been demonstrated on the
synaptic memristor. The initial values of the internal state
variables have been set to x0 = 0.5, y0 = 0.5 and z0 = 0. By
measuring the voltage change of the non-volatile cell state
variable Δy, before and after pulse actuation, we can evaluate
the overall memristance change, i.e. the overall synaptic
weight change [11]. The synapse receives voltage pulse trains
from presynaptic and postsynaptic neurons, where each pulse
has an amplitude A = 1 V and pulse width tpw = 1 ms. Both
neurons emit N = 10 pulses with a tipi = 1 ms inter-pulse
interval. The STDP curve has been calculated by changing
the time between the beginning of the presynaptic and the
postsynaptic neuron voltage pulse trains, tgap, Fig. 1. As inter-
pulse interval decreases, the synaptic weight modification
becomes more prominent.

Fig. 1. Demonstration of unsupervised synaptic weight update

Additionally, pulse width tpw and pulse amplitude A have
been varied on a single synaptic non-volatile memristor in
order to determine the changes in the STDP learning curve.
Fig. 2 presents the variation of pulse width tpw, where each
pulse has a width of a) 2 ms (blue curve), b) 3 ms (red curve)
and c) 4 ms (green curve). Fig. 3 presents the variation of
pulse amplitude, where each pulse has an amplitude A of: a)
1 V (blue curve), b) 2 V (red curve) and c) 3 V (green curve).

Fig. 2. STDP learning curve with varying presynaptic neuron pulse width

of 2 ms (blue curve), 3 ms (red curve) and 4 ms (green curve).

Fig. 3. STDP learning curve with varying presynaptic neuron pulse
amplitude: 1 V (blue curve), 2 V (red curve) and 3 V (green curve).

Using four non-volatile memristors, and two volatile
memristors [9], we have formed a simple MSNN, composed
of a 2×2 memristive synaptic array, and two postsynaptic
memristive LIF neuron circuits, Fig. 4. Line resistances that
exist in the LIF model are substituted with memristive
synapses whose resistance changes with input voltage.
Source signals V0 and V1 represent signals of the presynaptic
neurons, memristors S00, S01, S10 and S11 placed in the 2x2
crossbar are synapses, which are connected to LIF
postsynaptic neurons N0 and N1.

Fig. 4. Circuit used to simulate unsupervised synaptic weight update.

Fig. 5 shows simulation results of unsupervised synaptic
weight modification of the memristive array. The initial
values of synapses are: Rinit(S00) = 90 kΩ, Rinit (S01) = 30 kΩ,
Rinit (S10) = 90 kΩ and Rinit (S11) = 40 kΩ. The waveforms in
the upper plot pane, Fig. 5, show the voltages of the sources
V0 and V1 and postsynaptic neurons N0 and N1, while
waveforms in the middle plot pane show the voltages of
synapses S00, S01, S10 and S11. The bottom plot plane presents
the current passing through the memristors of the
postsynaptic neurons: N0 (yellow curve) and N1 (green
curve). If synapses S01 and S11 are set to a low resistive state
(LRS), while synapses S00 and S10 are set to a high resistive
state (HRS) and source V0 emits a pulse train while V1 is
inactive, N1 will fire, see bottom plot pane in Fig. 5.

Fig. 5. Simulation results of the memristive array with S01 and S11 in LRS
state while S00 and S10 are in HRS state. The presynaptic input is
coming from V0 (only the second LIF neuron fires).

Fig. 6. Simulation results of the memristive array with S01 and S10 in LRS
state while S00 and S11 are in HRS state. The presynaptic input is
coming from both V0 and V1 (both postsynaptic LIF neurons fire).

Furthermore, simulations have been performed with two
initial values of synapses S01 and S10 set to LRS
(Rinit(S01) = 30 kΩ and Rinit(S10) = 20 kΩ), while synapses
S00 and S11 were in HRS (Rinit(S00) = Rinit(S11) = 90 kΩ).
Presynaptic signal comes from both sources V0 and V1, which
induces firing behavior in neurons N0 and N1, (Fig. 6 bottom
graph). Delay in firing event originates from different initial
resistances of synaptic memristors. Namely, transition is
faster when initial value x0=(Roff−Rinit)/(Roff−Ron) of state
variable x is closer to one.

The amplitudes of the currents in Fig. 5 and Fig. 6 depend
on the minimal (���) and maximal (����) resistance of the
memristor model. If the minimal resistance is 1 Ω, current
amplitudes can be in the range of several amperes.
Additionally, the described neural network has been scaled
up to a 5x5 dimension, which demonstrates that the model
can be used for an arbitrary size of a fully-connected all-
memristive spiking neural network.

Fig. 7. 5x5 circuit used to simulate unsupervised synaptic weight update.

III. SIMULATION OF MEMRISTIVE ARRAY IN SIMSCAPE

The used memristor model and electrical circuits have
been independently implemented in the Simscape/Simulink
simulation environment. All the experiments described in
Section II are repeated with the same sets of parameters (Table
I), showing a perfect match with the results presented in
Section II. As an illustration of obtained results, the STDP
learning rule is shown in Fig. 9. The Simscape model of the
used memristor is shown in Fig. 8.

IV. CONCLUSION

In the paper, a simple memristive spiking neural network
simulator is presented, developed independently within
LTspice and Simscape/Simulink simulators. The non-volatile
memristors used for the synapses, and volatile memristors
within the leaky integrate-and-fire neurons, are modeled in the
same way, differing in only one parameter, which dictate
volatile or non-volatile working regime of memristors. It is
demonstrated how the spike timing dependent plasticity
learning rule can be implemented on synaptic memristors. The
simulation of the behavior of simple 2x2 and 5x5 all-
memristive spiking neural networks shows how unsupervised
synaptic weight modification of the memristive array controls
firing events of appropriate post-synaptic neurons.

ACKNOWLEDGMENT

This work was supported in part by the European Union’s
Horizon 2020 Research and Innovation Programme under the
Grant Agreement 856967, and in part by the Ministry of
Education, Science and Technological Development through
project no. 451-03-68/2022-14/ 200156 “Innovative scientific
and artistic research from the FTS (activity) domain”, 2022.

Fig. 8. Simscape model of memristor used in this paper.

Fig. 9. STDP learning rule of the memristor working in non-volatile

regime. Upper graph: relative change of the memductance G=1/Rmem
vs. time difference of pre- and post-synaptic neurons firing, ∆t=tpre−tpost
; Middle graph: relative change of the first state variable x vs. ∆t;
Lower graph: relative change of the second state variable y vs. ∆t.

REFERENCES

[1] Ascoli, A.; Demirkol, A.S.; Tetzlaff, R.; Slesazeck, S.; Mikolajick, T.;
Chua, L.O. On local activity and edge of chaos in a NaMLab
memristor. Front. Neurosci. 2021, 15, 651452. doi:
10.3389/fnins.2021.651452.

[2] Sung, C., Hwang, H., & Yoo, I.K. (2018). Perspective: A review on
memristive hardware for neuromorphic computation. Journal of
Applied Physics. doi: 10.1063/1.5037835

[3] S. Yu, "Neuro-inspired computing with emerging nonvolatile
memorys," in Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285,
Feb. 2018. doi: 10.1109/JPROC.2018.2790840.

[4] Krestinskaya, O.; James, A.P.; Chua, L.O. Neuromemristive circuits
for edge computing: A review. IEEE Trans. Neural Netw. Learn Syst.
2020, 31, 4–23. doi: 10.1109/TNNLS.2019.2899262

[5] Wang, Z., Joshi, S., Savel’ev, S. et al. Fully memristive neural
networks for pattern classification with unsupervised learning. Nat
Electron 1, 137–145 (2018). doi: 10.1038/s41928-018-0023-2

[6] Pantazi, A.; Wo´zniak, S.; Tuma, T.; Eleftheriou, E. All-Memristive
neuromorphic computing with level-tuned neurons. Nanotechnology
2016, 27, 355205. doi: 10.1088/0957-4484/27/35/355205

[7] Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E.,
Rose, G.S., & Plank, J.S. (2017). A Survey of Neuromorphic
Computing and Neural Networks in Hardware. ArXiv,
abs/1705.06963.

[8] R. Berdan, C. Lim, A. Khiat, C. Papavassiliou and T. Prodromakis, "A
Memristor SPICE Model Accounting for Volatile Characteristics of
Practical ReRAM," in IEEE Electron Device Letters, vol. 35, no. 1, pp.
135-137, Jan. 2014, doi: 10.1109/LED.2013.2291158.

[9] Samardzic, N.M.; Bajic, J.S.; Sekulic, D.L.; Dautovic, S. Volatile
Memristor in Leaky Integrate-and-Fire Neurons: Circuit Simulation
and Experimental Study. Electronics 2022, 11, 894. doi:
10.3390/electronics11060894

[10] Dautovic, S.; Samardzic, N.; Juhas, A.; Ascoli, A.; Tetzlaff, R.
Simscape and LTspice models of HP ideal generic memristor based on
finite closed form solution for window functions. In Proceedings of the
28th IEEE International Conference on Electronics Circuits and
Systems (ICECS), Dubai, United Arab Emirates, 28 November–1
December 2021. doi: 10.1109/ICECS53924.2021.9665488

[11] Li Q, Serb A, Prodromakis T, Xu H. A memristor SPICE model
accounting for synaptic activity dependence. PLoS One. 2015 Mar
18;10(3):e0120506. doi: 10.1371/journal.pone.0120506. PMID:
25785597; PMCID:

[12] Biolek, Dalibor, Viera Biolková and Zdeněk Biolek. “SPICE Model of
Memristor with Nonlinear Dopant Drift.” Radioengineering 18
(2009): 210-214.

[13] Vincan V., Zoranovic J., Samardzic N., Dautovic S., “LTspice
Simulations of Memristor Models and Memristive Arrays”,
https://github.com/VladimirVincan/memristor-models-snn (accessed:
May. 15, 2022).

component memR < foundation.electrical.branch
% VOLATILE&NON-VOLATILE MEMR MODEL
% 2022 FTS UNS Research Group
parameters
 Roff = {100e3, 'Ohm'};
 Ron = {1, 'Ohm'};
 Rint={50e3, 'Ohm'}; % init res of memR
 A={1,'A'};
 AOM={1,'A*Ohm'};
 HERC={1,'1/s'};
 z0={0,'1'};% init cond for 3rd state var z
 p0={2,'1'};% exponent param. in win. fun.
 uv= {100e-12, '1'}; % dopant mobility
 D={10e-9, '1'}; % device thickness
 qp={100e-9,'1'};
 qn={-80e-9,'1'};
 Rx={1, '1'};
 Cx={0.5, '1'};
 Cy={1, '1'};
 Rz={0.1, '1'};
 Cz={1, '1'};
end
 k=uv*Ron/D^2;
 x0={(Roff-Rint)/(Roff-Ron),'1'};
 % init cond for 1st state variable x
 y0={(Roff-Rint)/(Roff-Ron),'1'};
 % init cond for 2nd state variable y
end
variables(Access=private)
 x = {x0, '1'}; % 1st state var (vol cell)
 y = {y0, '1'};% 2nd state var, non-vol cell
 z = {z0, '1'};% 3rd state var (charge cell)
end
equations
 assert(Roff>0)
 assert(Ron>0)
 let
 M = x*Ron+(1-x)*Roff;
 My = y*Ron+(1-y)*Roff;
 fours_x = (1-(2*x-1)^2)/…
 (1-(2*x-1)^2+(2*x-1)^(2*p0));
 fours_y = (1-(2*y-1)^2)/…
 (1-(2*y-1)^2+(2*y-1)^(2*p0));
 i0_x = i*uv*Ron*fours_x/D^2/AOM;
 i0_y = i*uv*Ron*fours_y/D^2/AOM;
 in
 % **** module x *********
 x.der == (-(x-y)/(Rx*Cx) + i0_x/Cx)*HERC;
 %******** module y *********
 if (v>0 && z>qp) || (v<0 && z<qn)
 y.der == 1/(Cy)*i0_y*HERC;
 else
 y.der == 0*HERC;
 end
 %******** module z ********
 z.der == 1/(Cz)*(i/A - z/Rz)*HERC;
 i == v/M;
 end
end
end

