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Abstract— In this paper we present a circuit-level simulation 

test bed for an all-memristive spiking neural network (MSNN), 

composed of synapses and leaky integrate-and-fire (LIF) 

neuron circuits. As recently proposed, an all-memristive neural 

network can be designed using volatile diffusion memristors as 

part of the LIF neuron, and non-volatile drift memristors as 

synaptic elements. The cognitive performances of our MSNN 

are demonstrated by the implementation of the spike timing 

dependent plasticity (STDP) learning rule. Starting from a 

circuit-level memristive neuron model which incorporates 

volatility, and a synaptic memristive array, a simple MSNN 

circuit simulator is designed and its performances are discussed. 
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I. INTRODUCTION 

Memristive spiking neural networks (MSNNs) are a 
specific type of spiking neural networks (SNNs) that utilize 
unique properties of memristive devices: computational and 
memory capability, stochasticity, multi-level states, nanoscale 
size, etc. Various memristive devices are seen as an enabling 
technology for different energy efficient neuromorphic 
architectures, especially in the future edge-AI and 5G/6G 
applications. 

Depending on the spiking neuron model type, memristors 
that model neurons have to fulfil additional requirements. For 
example, the Hodgkin-Huxley neuron model requires 
memristors to have the local activity property [1]. Concerning 
synapses, a common feature of the synaptic memristor is non-
volatility [2], [3] which enables the realization of synaptic 
plasticity. 

Various MSNN architectures have been presented so far 
[4], including all-memristive neural networks with leaky 
integrate-and-fire (LIF) [5] and integrate and fire (IF) [6] 
memristive neuron circuits. Nevertheless, the LIF neuron 
model remains the most popular, as it allows a satisfactory 
trade-off between device complexity and the ability to 
replicate biological neuron dynamics [7]. 

In this paper we present circuit-based simulations of all-
memristive spiking neural networks with the memristive LIF 
neuron model. First, we demonstrate that the modified SPICE 
model of a memristor [8], [9] with four subcircuit modules 
and three state variables can be used to mimic synaptic 
activity. The spike timing dependent plasticity (STDP) 
learning rule has been demonstrated on a single synaptic 
memristor in LTspice and Simscape/Simulink simulators. 
Upon demonstrating that the same memristor model can be 
used to design the leaky integrate-and-fire neuron when 
operating in the volatile regime [9], we have realized simple 

2×2 and 5×5 memristor synaptic arrays with the ability to 
perform unsupervised synaptic weight modification. 

II. SIMULATION OF MEMRISTIVE ARRAY IN LTSPICE 

Starting from the SPICE model of a memristor with three 
state variables [8] which was modified with a new window 
function ����� [9], [10], we have adjusted subcircuit model 
parameters of the memristor in order to achieve non-volatile 
dynamics. The memristor model has been implemented with 
the following equations: 
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where ���� , ���� and ���� are the resistance, voltage and 
current passing through the memristor; x, y and z are internal 
state variables which can be represented as voltages of the 
subcircuits; µv is the dopant mobility; D is the thickness of 
the active layer; &' and &� are threshold parameters for non-

volatile resistance switching. Parameters of the neuron and 
synaptic memristors are shown in Table I. A larger value of 
capacitance Cx of the synaptic memristor has been set to 5 F, 
as it provides higher values of the x-module time constant 
[11], enabling the non-volatile state transition. It is worth 
mentioning that the values of resistances and capacitors in 
these submodules do not have physical interpretation, they 
are used solely to realize coupled differential equations of 
memristors [11]. Additionally, large capacitance values have 
already been demonstrated in Biolek’s memristor modeling 
paper [12]. The LTspice code used for modeling the 
memristors in neurons and memristive synapses is given in 
[9] and [13].   



TABLE I.  MEMRISTOR MODEL PARAMETERS 

Parameter 
Neuron 

model 

Synapse 

model 

Ron 1 Ω 1 Ω 

Roff 100 kΩ 100 kΩ 

µv 100 pm2s-1V-1 100 pm2s-1V-1 

D 10 nm 10 nm 

qp 100 nV 100 nV 

qn −80 nV −80 nV 

Cx 5 F 0.5 F 

Rx 1 Ω 1 Ω 

Cy 1 F 1 F 

Cz 1 F 1 F 

Rz 0.1 Ω 0.1 Ω 

The memristor, as part of the LIF neuron, allows gradual 
conductance modulation due to memductance dependence on 
the state variable x, which cannot be realized with a simple 
RC circuit in the LIF model.  

The STDP learning rule has been demonstrated on the 
synaptic memristor. The initial values of the internal state 
variables have been set to x0 = 0.5, y0 = 0.5 and z0 = 0. By 
measuring the voltage change of the non-volatile cell state 
variable Δy, before and after pulse actuation, we can evaluate 
the overall memristance change, i.e. the overall synaptic 
weight change [11]. The synapse receives voltage pulse trains 
from presynaptic and postsynaptic neurons, where each pulse 
has an amplitude A  =  1 V and pulse width tpw = 1 ms. Both 
neurons emit N  =  10 pulses with a tipi = 1 ms inter-pulse 
interval. The STDP curve has been calculated by changing 
the time between the beginning of the presynaptic and the 
postsynaptic neuron voltage pulse trains, tgap, Fig. 1. As inter-
pulse interval decreases, the synaptic weight modification 
becomes more prominent. 

 

Fig. 1. Demonstration of unsupervised synaptic weight update 

Additionally, pulse width tpw and pulse amplitude A have 
been varied on a single synaptic non-volatile memristor in 
order to determine the changes in the STDP learning curve. 
Fig. 2 presents the variation of pulse width tpw, where each 
pulse has a width of a) 2 ms (blue curve), b) 3 ms (red curve) 
and c) 4 ms (green curve). Fig. 3 presents the variation of 
pulse amplitude, where each pulse has an amplitude A of: a) 
1 V (blue curve), b) 2 V (red curve) and c) 3 V (green curve). 

 
Fig. 2. STDP learning curve with varying presynaptic neuron pulse width 

of 2 ms (blue curve), 3 ms (red curve) and 4 ms (green curve).  

 

Fig. 3. STDP learning curve with varying presynaptic neuron pulse 
amplitude: 1 V (blue curve), 2 V (red curve) and 3 V (green curve). 

Using four non-volatile memristors, and two volatile 
memristors [9], we have formed a simple MSNN, composed 
of a 2×2 memristive synaptic array, and two postsynaptic 
memristive LIF neuron circuits, Fig. 4. Line resistances that 
exist in the LIF model are substituted with memristive 
synapses whose resistance changes with input voltage. 
Source signals V0 and V1 represent signals of the presynaptic 
neurons, memristors S00, S01, S10 and S11 placed in the 2x2 
crossbar are synapses, which are connected to LIF 
postsynaptic neurons N0 and N1. 

 
Fig. 4. Circuit used to simulate unsupervised synaptic weight update. 

 

 

 

 



Fig. 5 shows simulation results of unsupervised synaptic 
weight modification of the memristive array. The initial 
values of synapses are: Rinit(S00) = 90 kΩ, Rinit (S01) = 30 kΩ, 
Rinit (S10) = 90 kΩ and Rinit (S11) = 40 kΩ. The waveforms in 
the upper plot pane, Fig. 5, show the voltages of the sources 
V0 and V1 and postsynaptic neurons N0 and N1, while 
waveforms in the middle plot pane show the voltages of 
synapses S00, S01, S10 and S11. The bottom plot plane presents 
the current passing through the memristors of the 
postsynaptic neurons: N0 (yellow curve) and N1 (green 
curve). If synapses S01 and S11 are set to a low resistive state 
(LRS), while synapses S00 and S10 are set to a high resistive 
state (HRS) and source V0 emits a pulse train while V1 is 
inactive, N1 will fire, see bottom plot pane in Fig. 5.  

 

Fig. 5. Simulation results of the memristive array with S01 and S11 in LRS 
state while S00 and S10 are in HRS state. The presynaptic input is 
coming from V0 (only the second LIF neuron fires). 

 

Fig. 6. Simulation results of the memristive array with S01 and S10 in LRS 
state while S00 and S11 are in HRS state. The presynaptic input is 
coming from both V0 and V1 (both postsynaptic LIF neurons fire). 

Furthermore, simulations have been performed with two 
initial values of synapses S01 and S10 set to LRS 
(Rinit(S01)  =  30 kΩ and Rinit(S10) = 20 kΩ), while synapses 
S00 and S11 were in HRS (Rinit(S00) = Rinit(S11) = 90 kΩ). 
Presynaptic signal comes from both sources V0 and V1, which 
induces firing behavior in neurons N0 and N1, (Fig. 6 bottom 
graph). Delay in firing event originates from different initial 
resistances of synaptic memristors. Namely, transition is 
faster when initial value x0=(Roff−Rinit)/(Roff−Ron) of state 
variable x is closer to one. 

The amplitudes of the currents in Fig. 5 and Fig. 6 depend 
on the minimal (���) and maximal (����) resistance of the 
memristor model. If the minimal resistance is 1 Ω, current 
amplitudes can be in the range of several amperes. 
Additionally, the described neural network has been scaled 
up to a 5x5 dimension, which demonstrates that the model 
can be used for an arbitrary size of a fully-connected all-
memristive spiking neural network.  

 

Fig. 7. 5x5 circuit used to simulate unsupervised synaptic weight update. 

III. SIMULATION OF MEMRISTIVE ARRAY IN SIMSCAPE 

The used memristor model and electrical circuits have 
been independently implemented in the Simscape/Simulink 
simulation environment. All the experiments described in 
Section II are repeated with the same sets of parameters (Table 
I), showing a perfect match with the results presented in 
Section II. As an illustration of obtained results, the STDP 
learning rule is shown in Fig. 9. The Simscape model of the 
used memristor is shown in Fig. 8. 

IV. CONCLUSION 

In the paper, a simple memristive spiking neural network 
simulator is presented, developed independently within 
LTspice and Simscape/Simulink simulators. The non-volatile 
memristors used for the synapses, and volatile memristors 
within the leaky integrate-and-fire neurons, are modeled in the 
same way, differing in only one parameter, which dictate 
volatile or non-volatile working regime of memristors. It is 
demonstrated how the spike timing dependent plasticity 
learning rule can be implemented on synaptic memristors. The 
simulation of the behavior of simple 2x2 and 5x5 all-
memristive spiking neural networks shows how unsupervised 
synaptic weight modification of the memristive array controls 
firing events of appropriate post-synaptic neurons. 
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Fig. 8. Simscape model of memristor used in this paper.  

 

 
Fig. 9. STDP learning rule of the memristor working in non-volatile 

regime. Upper graph: relative change of the memductance G=1/Rmem 
vs. time difference of pre- and post-synaptic neurons firing, ∆t=tpre−tpost 
; Middle graph: relative change of the first state variable x vs. ∆t; 
Lower graph: relative change of the second state variable y vs. ∆t.  

REFERENCES 

[1] Ascoli, A.; Demirkol, A.S.; Tetzlaff, R.; Slesazeck, S.; Mikolajick, T.; 
Chua, L.O. On local activity and edge of chaos in a NaMLab 
memristor. Front. Neurosci. 2021, 15, 651452. doi: 
10.3389/fnins.2021.651452. 

[2] Sung, C., Hwang, H., & Yoo, I.K. (2018). Perspective: A review on 
memristive hardware for neuromorphic computation. Journal of 
Applied Physics. doi: 10.1063/1.5037835 

[3] S. Yu, "Neuro-inspired computing with emerging nonvolatile 
memorys," in Proceedings of the IEEE, vol. 106, no. 2, pp. 260-285, 
Feb. 2018. doi: 10.1109/JPROC.2018.2790840. 

[4] Krestinskaya, O.; James, A.P.; Chua, L.O. Neuromemristive circuits 
for edge computing: A review. IEEE Trans. Neural Netw. Learn Syst. 
2020, 31, 4–23. doi: 10.1109/TNNLS.2019.2899262 

[5] Wang, Z., Joshi, S., Savel’ev, S. et al. Fully memristive neural 
networks for pattern classification with unsupervised learning. Nat 
Electron 1, 137–145 (2018). doi: 10.1038/s41928-018-0023-2 

[6] Pantazi, A.; Wo´zniak, S.; Tuma, T.; Eleftheriou, E. All-Memristive 
neuromorphic computing with level-tuned neurons. Nanotechnology 
2016, 27, 355205. doi: 10.1088/0957-4484/27/35/355205 

[7] Schuman, C.D., Potok, T.E., Patton, R.M., Birdwell, J.D., Dean, M.E., 
Rose, G.S., & Plank, J.S. (2017). A Survey of Neuromorphic 
Computing and Neural Networks in Hardware. ArXiv, 
abs/1705.06963. 

[8] R. Berdan, C. Lim, A. Khiat, C. Papavassiliou and T. Prodromakis, "A 
Memristor SPICE Model Accounting for Volatile Characteristics of 
Practical ReRAM," in IEEE Electron Device Letters, vol. 35, no. 1, pp. 
135-137, Jan. 2014, doi: 10.1109/LED.2013.2291158. 

[9] Samardzic, N.M.; Bajic, J.S.; Sekulic, D.L.; Dautovic, S. Volatile 
Memristor in Leaky Integrate-and-Fire Neurons: Circuit Simulation 
and Experimental Study. Electronics 2022, 11, 894. doi: 
10.3390/electronics11060894 

[10] Dautovic, S.; Samardzic, N.; Juhas, A.; Ascoli, A.; Tetzlaff, R. 
Simscape and LTspice models of HP ideal generic memristor based on 
finite closed form solution for window functions. In Proceedings of the 
28th IEEE International Conference on Electronics Circuits and 
Systems (ICECS), Dubai, United Arab Emirates, 28 November–1 
December 2021. doi: 10.1109/ICECS53924.2021.9665488 

[11] Li Q, Serb A, Prodromakis T, Xu H. A memristor SPICE model 
accounting for synaptic activity dependence. PLoS One. 2015 Mar 
18;10(3):e0120506. doi: 10.1371/journal.pone.0120506. PMID: 
25785597; PMCID:  

[12] Biolek, Dalibor, Viera Biolková and Zdeněk Biolek. “SPICE Model of 
Memristor with Nonlinear Dopant Drift.” Radioengineering 18 
(2009): 210-214. 

[13] Vincan V., Zoranovic J., Samardzic N., Dautovic S., “LTspice 
Simulations of Memristor Models and Memristive Arrays”, 
https://github.com/VladimirVincan/memristor-models-snn (accessed: 
May. 15, 2022). 

component memR < foundation.electrical.branch 
% VOLATILE&NON-VOLATILE MEMR MODEL 
% 2022 FTS UNS Research Group 
parameters 
    Roff = {100e3, 'Ohm'}; 
    Ron = {1, 'Ohm'}; 
    Rint={50e3, 'Ohm'};    % init res of memR 
    A={1,'A'}; 
    AOM={1,'A*Ohm'}; 
    HERC={1,'1/s'}; 
    z0={0,'1'};% init cond for 3rd state var z 
    p0={2,'1'};% exponent param. in win. fun. 
    uv= {100e-12,  '1'};   % dopant mobility 
    D={10e-9, '1'};        % device thickness 
    qp={100e-9,'1'};  
    qn={-80e-9,'1'};  
    Rx={1, '1'}; 
    Cx={0.5, '1'}; 
    Cy={1, '1'}; 
    Rz={0.1, '1'}; 
    Cz={1, '1'}; 
end 
    k=uv*Ron/D^2; 
    x0={(Roff-Rint)/(Roff-Ron),'1'};  
    % init cond for 1st state variable x 
    y0={(Roff-Rint)/(Roff-Ron),'1'}; 
    % init cond for 2nd state variable y 
end 
variables(Access=private) 
    x = {x0, '1'};   % 1st state var (vol cell) 
    y = {y0, '1'};% 2nd state var, non-vol cell 
    z = {z0, '1'};% 3rd state var (charge cell) 
end 
equations 
    assert(Roff>0) 
    assert(Ron>0) 
    let 
        M = x*Ron+(1-x)*Roff; 
        My = y*Ron+(1-y)*Roff; 
        fours_x = (1-(2*x-1)^2)/… 
                  (1-(2*x-1)^2+(2*x-1)^(2*p0)); 
        fours_y = (1-(2*y-1)^2)/… 
                  (1-(2*y-1)^2+(2*y-1)^(2*p0)); 
        i0_x = i*uv*Ron*fours_x/D^2/AOM; 
        i0_y = i*uv*Ron*fours_y/D^2/AOM; 
    in 
    % **** module x ********* 
     x.der == (-(x-y)/(Rx*Cx) + i0_x/Cx)*HERC; 
    %******** module y ********* 
        if  (v>0 && z>qp) || (v<0 && z<qn)  
            y.der == 1/(Cy)*i0_y*HERC; 
        else 
            y.der == 0*HERC; 
        end 
    %******** module z ******** 
     z.der == 1/(Cz)*(i/A - z/Rz)*HERC; 
     i == v/M; 
    end 
end 
end 

 


