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Abstract— As amounts of data generated from countless and 

ubiquitous IoT sensors are increased very sharply, memristor 

crossbars can be considered very suitable to edge intelligence 

hardware due to high energy efficiency of computing, dense and 

3D integration, non-volatility, multi-state memory, CMOS 

compatible fabrication etc. But, due to the limits of immature 

fabrication technology, the memristor crossbars can have defects 

such as stuck-at-faults. To compensate for malfunction of neural 

networks caused from the fabrication-related defects, in this 

paper, a simple neuron deactivation scheme is reviewed and 

analyzed for maximizing its capability to compensate for the 

neural network’s performance degradation due to the memristor 

defects. The column deactivation scheme can be particularly 

useful for the edge intelligence hardware, because the defect map 

occupying a large amount of memory is not needed during the 

training. Moreover, the direct mapping from the calculated 

synaptic weights to the memristor crossbar can save the re-

training time required for the defect-aware training scheme. 
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I. INTRODUCTION 

Traditional CMOS-based computing platforms 

using Von Neumann architecture such as CPUs, GPUs, etc. 

are no longer able to handle huge amounts of real-time 

unstructured data obtained ubiquitously from countless 

Internet of Things (IoT) devices and sensors [1]. The 

bottleneck of Von Neumann architecture is caused from that 

memory units are separated from computing ones in the 

architecture. For processing the large amounts of unstructured 

data from IoT sensors, the computing units should access the 

memory ones very frequently, resulting in increasing the 

power consumption of memory access to an unacceptably 

high level in the Von Neumann computing circuits. 

To overcome the memory bottleneck of the Von 

Neumann architecture, emerging computing circuits such as 

memristor crossbars have been suggested as a new hardware 

solution for realizing energy-efficient next-generation 

computing systems, which can be suitable to Artificial 

Intelligence (AI) applications [2], [3].  

Specifically, Vector Matrix Multiplication (VMM) 

can be achieved by multiplying vectors and matrices using the 

memristor's voltage-current relationship based on Ohm's law 

[3]–[5]. If the VMM calculation is processed on the memristor 

crossbars, the multiplication performance can be enhanced 

easily by adding extra columns in parallel to the crossbars. In 

addition to the parallelism, the memristor crossbars can be 

nonvolatile, stacked layer by layer, used to store multi-states, 

and fabricated with CMOS devices. All these features make 

the memristor crossbars suitable to various applications of 

neural networks processing huge amounts of unstructured 

data. 

Unfortunately, however, due to the limitation of 

immature fabrication technology, a manufacturing yield of 

memristor crossbars is still not high enough for implementing 

next generation computing systems based on emerging 

computing devices such as memristors. Despite providing 

higher computing performance and energy efficiency than 

traditional CMOS computing systems, the memristor 

crossbars have a variety of fabrication-related difficulties, 

such as stuck-at-fault defects and variations. 

Fig. 1 shows schematics of ideal crossbar and real 

crossbar. Here the ideal crossbar is assumed no defects. On the 

contrary, defects such as stuck-at-faults can be found in the 

real crossbar. The faulty cells get stuck in the High Resistance 

State (HRS) or the Low Resistance State (LRS) in the real 

crossbar. The black dot and empty circle represent the normal 

LRS cell and HRS one, respectively, in the ideal crossbar. In 

Fig. 1b, the red dot and empty circle represent the stuck-at-

LRS fault and struck-at-HRS one, respectively. The stuck-at-

fault cells cannot be programmed because their resistance 

states get stuck at HRS or LRS. In Fig. 1, I1+ and I1- represent 

plus column current and minus one of Column #1, 

respectively. The both plus and minus columns are needed to 

calculate the positive and negative synaptic weights. The plus 

current and minus one of Column #1, I1+ and I1- are delivered 

to the hidden neuron Y1. In this paper, ternary synaptic 

weights of -1, +1, and 0 are used in the neural networks. 

Now let's consider how faulty memristor devices 

may affect the neural network’s performance implemented 

with defective memristor crossbars. Unfortunately, even a 

single memristor defect can have a significant influence on the 

VMM calculation, since the stuck-at-LRS faults in Fig. 1 can 

dramatically increase the column current in the crossbar. The 

training and inference accuracy of neural networks 

implemented with the defective memristor crossbars may be 

lowered drastically due to erroneous neuron activation caused 

by the defective cells [5]–[9]. 

To compensate for the neural network’s performance 

degradation due to the memristor defects, the synapse-aware 

training methods are used widely [10], [11]. The re-training 

method considering memristor defects can compensate for the 

accuracy degradation very effectively. However, a large 

amount of memory should be used during the defect-aware re-

training time for storing the memristor defect map [12], [13]. 

Moreover, the re-training time can be very long to consider all 

the memristor defects one by one. The memory overhead of 

the defect map and long re-training time of the synapse-based 



defect-aware scheme can impose a big burden on the edge 

intelligence hardware such as IoT sensors, etc. 

 
Fig. 1. The schematics of (a) the ideal crossbar without defects and (b) the 
real crossbar with stuck-at-fault defects. 

Unlike the defect-aware training method, we can 

consider to exclude defective columns from the neural 

network’s training and inference [12]. If the defective columns 

are deactivated during the training and inference of the neural 

networks, only the normal columns in the defective memristor 

crossbar can participate in the neural network’s operations 

[12]. By doing so, the accuracy degradation due to the 

memristor defects can be improved even though the neural 

networks are realized with the defective crossbars. 

In next Section 2, we review the neuron deactivation 

scheme that excludes the severely-defective columns, which 

contain a large number of defect cells, from the neural 

network’s operation. Moreover, we propose a simple method 

that can detect the severely-faulty columns easily without 

measuring all the stuck-at-faults cell by cell. In section 3, we 

compare the neural network’s performance of the real 

memristor crossbars without and with the defective column 

deactivation for various defect percentages. Section 3 

considers the accuracy degradation due to not only the 

memristor defects, but also the memristor's conductance 

variation. Finally, in Section 4, this paper is summarized. 

II. NEURON DEACTIVATION SCHEME FOR DEFECT-

TOLERANT MEMRISTOR NEURAL NETWORKS 

Fig. 2(a) shows a flowchart of the neuron 

deactivation and the training/inference of the defective 

crossbar for realizing defect-tolerant memristor neural 

networks. First, we program all the cells in the crossbar to 

HRS. After programming all the cells to HRS, we measure 

each column’s current one by one. The measured column 

current is compared to IREF. If the column’s current is larger 

than IREF, the column can be defined as severely-defective. 

The stuck-at-LRS faults contained in the defective column can 

increase its column current significantly, because they are not 

able to be programmed to HRS. Once the column is defined 

as severely-defective, a neuron connected to the column 

should be deactivated during the neural network’s operations 

such as training and inference to prohibit the defective column 

from being involved in the neuron activation. 

One thing to note here is that the neuron deactivation 

scheme explained in this paper does not need the memristor 

defect map during the training, which needs a large amount of 

memory to store the memristor defect information such as 

defect types and locations of the entire memristor crossbar 

[12]. Moreover, the neuron deactivation scheme does not need 

the re-training which is needed for considering the memristor 

defects during the training. Unlike the defect-aware training 

scheme, the neural deactivation scheme are able to transfer the 

calculated synaptic weights directly to the memristor crossbar. 

This is because the memristor crossbar after the neural 

deactivation can be assumed that it is composed of only 

normal cells. 

Fig. 2(b) shows a schematic of memristor crossbar 

circuit with the neuron deactivation scheme and the current 

comparator. In Fig. 2(b), the red box represents the severely-

defective columns. Here the other columns not surrounded by 

red box can be considered normal. If a column has small 

number of defects, the column can be considered normal. I1+ 

and I1− represent positive column current and negative one, 

respectively. Y1, Y2 and etc. represent the output voltages 

from the activation function circuit. For detecting the 

defective column, the column current is compared with the 

reference current by the comparator, C, as shown in Fig. 2(b). 

The current comparison is performed column by column and 

the result is stored at the latch, L that is connected to the 

activation circuit, F. If the column is defective severely, the 

latch, L can disable the activation function circuit, F, 

regardless of the column current. 

One thing to note here is that it is important to find a 

proper reference current, IREF that distinguishes the severely-

defective columns from the normal ones in the crossbar. The 

reference current that determines the number of deactivated 

columns in the crossbar can affect the neural network’s 

performance. For example, if the reference current is set too 

high, the recognition rate can be degraded significantly, 

because a large number of LRS defect cells can take part in 

the neural network’s operations. On the other hand, too many 

defective columns are deactivated, which means the reference 

current is set too low, the recognition rate can be degraded, 

too. This is because too many columns are prohibited from 

being involved in the neuron activation. 
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Fig. 2. (a) The flowchart of neuron deactivation and training/inference (b) 

The schematic of memristor crossbar with neuron deactivation scheme and 
the current comparator 

III. SIMULATION RESULTS 

 Fig. 3 shows the percentage of LRS defects per 

column ranked in descending order when the entire crossbar’s 

defect percentage is assumed as 20%. In Fig. 3, the neural 

network implemented with the defective crossbar is composed 

of only fully-connected layers. The network with fully-

connected layers is tested for MNIST data set. Here, the 

number of input neurons is decided as 784 for testing MNIST. 

For the tested neural networks, three cases of the number of 

hidden and output neurons are assumed in the simulation. The 

three cases are 213, 414 and 615 for Fig. 3(a), (b), and (c), 

respectively. The vertical dashed lines in Fig. 3(a), (b), and (c) 

indicate the percentage of LRS defects per column, at which 

the reference current is defined. The reference current can be 

found at the percentage of LRS defects per column showing 

the best recognition rate of the neural network implemented 

with the defective crossbar. During the training and inference, 

the columns to the left of the vertical dashed line that have a 

higher rank are deactivated. 

 
Fig. 3. The LRS defect percentage per column versus the ranked column # 
in descending orfer for (a) the number of crossbar's columns=213, (b) the 

number of crossbar's columns=414, and (c) the number of crossbar's 

columns=615 

 Fig. 4(a) compares the MNIST recognition rate 

between the ideal crossbar with no defects and the real 

crossbar with the defect percentage=5%. Here we tested three 

crossbars having different numbers of crossbar's columns. 

They are 213, 414, and 615, respectively, as indicated in 

Figure 3. For each case, the first bar is for the ideal crossbar. 

The second bar is for the defective crossbar with the neuron 

deactivation. The third bar is for the defective crossbar 

without the neuron deactivation. In Fig. 4(a), when the number 

of crossbar's column=213, the ideal crossbar has the 

recognition rate as high as 96.2%. If we consider the real 

crossbar with the defect percentage=5%, the recognition rate 

is lowered to 90.8%, when the neuron deactivation scheme is 

not used. If the severely-defective columns are deactivated, 

the rate can be recovered from 90.8% to 92%, for the defect 

percentage=5%. As the number of crossbar’s columns is 

increased, the recognition rate is improved much better, as 

indicated in Fig. 4(a). The rate loss of the neuron deactivation 

scheme is only about 1%, compared to the ideal crossbar. Fig. 

4(b) compares the MNIST recognition rate between the ideal 

crossbar with the defect percentage=0% and the real one with 

the defect percentage=20%. 

Similarly with Figure 4(a), Figure 5(a) compares the 

CIFAR-10 recognition rate between the ideal memristor 

crossbar without defect and the real crossbar with the defect 

percentage=5%. Here, we tested 3 cases of the number of 

columns in the crossbar. They are 213, 414, and 615, 

respectively. The neural network’s architecture for testing 

CIFAR-10 is ResNet [14], [15]. In this simulation, it is 

assumed that only the fully connected layers are implemented 

with the memristor crossbars. The convolution layers are 

assumed to be calculated by the traditional CMOS digital 

circuits. Figure 5(b) compares the CIFAR-10 rate between the 

ideal and real crossbars for the defect percentage=20%. 

 
Fig. 4. The MNIST recognition rate with and without the deactivation 

scheme with increasing the number of crossbar’s columns when (a) the 
crossbar’s defect percentage=5% and (b) the crossbar’s defect 

percentage=20%. 

 One more thing to note here is another fabrication-

related factor that degrades the neural net is memristor's 

conductance variation of HRS and LRS. Fig. 6 compares the 

CIFAR-10 recognition rate with the memristor’s conductance 

variation=0%, 5%, and 10% for different numbers of 

crossbar’s columns. Here, the crossbar’s defect percentage is 

assumed (a) 5%, (b) 10%, (c) 15%, and (d) 20%, respectively. 

Fig. 6 indicates that the recognition rate is improved better as 

the number of crossbar’s columns is increased. 

On the other hand, the recognition rate is degraded 

with increasing the memristor’s conductance variation. To 

minimize the programmed conductance variation, we can use 

the fine memristor programming scheme, where the 

conductance variation of HRS and LRS can be suppressed less 

than 5% [16]. If the memristors are programmed with the 

moderate programming scheme, the programmed 

conductance variation can be as large as 10% [16]. From Fig. 

6(d), the rate loss due to the conductance variation can be 

controlled as small as 0.6% for the number of crossbar's 
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columns=615, the conductance variation=10%, and the 

memristor defect percentage=20%. 

 
Fig. 5. The CIFAR-10 recognition rate with and without the deactivation 

scheme with increasing the number of crossbar’s columns, when (a) the 

crossbar’s defect percentage=5% and (b) the crossbar’s defect 
percentage=20%. The first bar is for the ideal crossbar. The second bar is for 

the defective crossbar with the neuron deactivation. The third bar is for the 

defective crossbar without the neuron deactivation. 

 
Fig. 6. The CIFAR-10 recognition rate with the memristance variation=0%, 

5%, and 10% for different numbers of crossbar columns, when (a) the defect 

percentage of memristor crossbar=5%, (b) the defect percentage of memristor 
crossbar=10%, (c) the defect percentage of memristor crossbar=15%, and (d) 

the defect percentage of memristor crossbar=20%. 

IV. CONCLUSIONS 

To compensate for malfunction of neural networks 

caused from the fabrication-related defects, in this paper, the 

simple neuron deactivation scheme was reviewed and 

analyzed for various numbers of crossbar's columns, various 

defect percentages, and various memristor's conductance 

variation.  

The column deactivation scheme reviewed in this 

paper could be particularly useful for the edge intelligence 

hardware. The column deactivation scheme does not need the 

memristor defect map occupying a large amount of memory. 

Moreover, the direct mapping from the calculated synaptic 

weights to the crossbar can save the re-training time required 

for the defect-aware training scheme significantly. 
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