

Neuron Deactivation Scheme for Defect-Tolerant

Memristor Neural Networks

Seokjin Oh, Jiyong An, and Kyeong-Sik Min

School of Electrical Engineering, Kookmin University, Seoul, Korea

E-mail) mks@kookmin.ac.kr

Abstract— As amounts of data generated from countless and

ubiquitous IoT sensors are increased very sharply, memristor

crossbars can be considered very suitable to edge intelligence

hardware due to high energy efficiency of computing, dense and

3D integration, non-volatility, multi-state memory, CMOS

compatible fabrication etc. But, due to the limits of immature

fabrication technology, the memristor crossbars can have defects

such as stuck-at-faults. To compensate for malfunction of neural

networks caused from the fabrication-related defects, in this

paper, a simple neuron deactivation scheme is reviewed and

analyzed for maximizing its capability to compensate for the

neural network’s performance degradation due to the memristor

defects. The column deactivation scheme can be particularly

useful for the edge intelligence hardware, because the defect map

occupying a large amount of memory is not needed during the

training. Moreover, the direct mapping from the calculated

synaptic weights to the memristor crossbar can save the re-

training time required for the defect-aware training scheme.

Keywords- neuron deactivation scheme, defect-tolerant

memristor neural networks, defective memristor crossbars,

memristor defects, edge intelligence

I. INTRODUCTION

Traditional CMOS-based computing platforms

using Von Neumann architecture such as CPUs, GPUs, etc.

are no longer able to handle huge amounts of real-time

unstructured data obtained ubiquitously from countless

Internet of Things (IoT) devices and sensors [1]. The

bottleneck of Von Neumann architecture is caused from that

memory units are separated from computing ones in the

architecture. For processing the large amounts of unstructured

data from IoT sensors, the computing units should access the

memory ones very frequently, resulting in increasing the

power consumption of memory access to an unacceptably

high level in the Von Neumann computing circuits.

To overcome the memory bottleneck of the Von

Neumann architecture, emerging computing circuits such as

memristor crossbars have been suggested as a new hardware

solution for realizing energy-efficient next-generation

computing systems, which can be suitable to Artificial

Intelligence (AI) applications [2], [3].

Specifically, Vector Matrix Multiplication (VMM)

can be achieved by multiplying vectors and matrices using the

memristor's voltage-current relationship based on Ohm's law

[3]–[5]. If the VMM calculation is processed on the memristor

crossbars, the multiplication performance can be enhanced

easily by adding extra columns in parallel to the crossbars. In

addition to the parallelism, the memristor crossbars can be

nonvolatile, stacked layer by layer, used to store multi-states,

and fabricated with CMOS devices. All these features make

the memristor crossbars suitable to various applications of

neural networks processing huge amounts of unstructured

data.

Unfortunately, however, due to the limitation of

immature fabrication technology, a manufacturing yield of

memristor crossbars is still not high enough for implementing

next generation computing systems based on emerging

computing devices such as memristors. Despite providing

higher computing performance and energy efficiency than

traditional CMOS computing systems, the memristor

crossbars have a variety of fabrication-related difficulties,

such as stuck-at-fault defects and variations.

Fig. 1 shows schematics of ideal crossbar and real

crossbar. Here the ideal crossbar is assumed no defects. On the

contrary, defects such as stuck-at-faults can be found in the

real crossbar. The faulty cells get stuck in the High Resistance

State (HRS) or the Low Resistance State (LRS) in the real

crossbar. The black dot and empty circle represent the normal

LRS cell and HRS one, respectively, in the ideal crossbar. In

Fig. 1b, the red dot and empty circle represent the stuck-at-

LRS fault and struck-at-HRS one, respectively. The stuck-at-

fault cells cannot be programmed because their resistance

states get stuck at HRS or LRS. In Fig. 1, I1+ and I1- represent

plus column current and minus one of Column #1,

respectively. The both plus and minus columns are needed to

calculate the positive and negative synaptic weights. The plus

current and minus one of Column #1, I1+ and I1- are delivered

to the hidden neuron Y1. In this paper, ternary synaptic

weights of -1, +1, and 0 are used in the neural networks.

Now let's consider how faulty memristor devices

may affect the neural network’s performance implemented

with defective memristor crossbars. Unfortunately, even a

single memristor defect can have a significant influence on the

VMM calculation, since the stuck-at-LRS faults in Fig. 1 can

dramatically increase the column current in the crossbar. The

training and inference accuracy of neural networks

implemented with the defective memristor crossbars may be

lowered drastically due to erroneous neuron activation caused

by the defective cells [5]–[9].

To compensate for the neural network’s performance

degradation due to the memristor defects, the synapse-aware

training methods are used widely [10], [11]. The re-training

method considering memristor defects can compensate for the

accuracy degradation very effectively. However, a large

amount of memory should be used during the defect-aware re-

training time for storing the memristor defect map [12], [13].

Moreover, the re-training time can be very long to consider all

the memristor defects one by one. The memory overhead of

the defect map and long re-training time of the synapse-based

defect-aware scheme can impose a big burden on the edge

intelligence hardware such as IoT sensors, etc.

Fig. 1. The schematics of (a) the ideal crossbar without defects and (b) the
real crossbar with stuck-at-fault defects.

Unlike the defect-aware training method, we can

consider to exclude defective columns from the neural

network’s training and inference [12]. If the defective columns

are deactivated during the training and inference of the neural

networks, only the normal columns in the defective memristor

crossbar can participate in the neural network’s operations

[12]. By doing so, the accuracy degradation due to the

memristor defects can be improved even though the neural

networks are realized with the defective crossbars.

In next Section 2, we review the neuron deactivation

scheme that excludes the severely-defective columns, which

contain a large number of defect cells, from the neural

network’s operation. Moreover, we propose a simple method

that can detect the severely-faulty columns easily without

measuring all the stuck-at-faults cell by cell. In section 3, we

compare the neural network’s performance of the real

memristor crossbars without and with the defective column

deactivation for various defect percentages. Section 3

considers the accuracy degradation due to not only the

memristor defects, but also the memristor's conductance

variation. Finally, in Section 4, this paper is summarized.

II. NEURON DEACTIVATION SCHEME FOR DEFECT-

TOLERANT MEMRISTOR NEURAL NETWORKS

Fig. 2(a) shows a flowchart of the neuron

deactivation and the training/inference of the defective

crossbar for realizing defect-tolerant memristor neural

networks. First, we program all the cells in the crossbar to

HRS. After programming all the cells to HRS, we measure

each column’s current one by one. The measured column

current is compared to IREF. If the column’s current is larger

than IREF, the column can be defined as severely-defective.

The stuck-at-LRS faults contained in the defective column can

increase its column current significantly, because they are not

able to be programmed to HRS. Once the column is defined

as severely-defective, a neuron connected to the column

should be deactivated during the neural network’s operations

such as training and inference to prohibit the defective column

from being involved in the neuron activation.

One thing to note here is that the neuron deactivation

scheme explained in this paper does not need the memristor

defect map during the training, which needs a large amount of

memory to store the memristor defect information such as

defect types and locations of the entire memristor crossbar

[12]. Moreover, the neuron deactivation scheme does not need

the re-training which is needed for considering the memristor

defects during the training. Unlike the defect-aware training

scheme, the neural deactivation scheme are able to transfer the

calculated synaptic weights directly to the memristor crossbar.

This is because the memristor crossbar after the neural

deactivation can be assumed that it is composed of only

normal cells.

Fig. 2(b) shows a schematic of memristor crossbar

circuit with the neuron deactivation scheme and the current

comparator. In Fig. 2(b), the red box represents the severely-

defective columns. Here the other columns not surrounded by

red box can be considered normal. If a column has small

number of defects, the column can be considered normal. I1+

and I1− represent positive column current and negative one,

respectively. Y1, Y2 and etc. represent the output voltages

from the activation function circuit. For detecting the

defective column, the column current is compared with the

reference current by the comparator, C, as shown in Fig. 2(b).

The current comparison is performed column by column and

the result is stored at the latch, L that is connected to the

activation circuit, F. If the column is defective severely, the

latch, L can disable the activation function circuit, F,

regardless of the column current.

One thing to note here is that it is important to find a

proper reference current, IREF that distinguishes the severely-

defective columns from the normal ones in the crossbar. The

reference current that determines the number of deactivated

columns in the crossbar can affect the neural network’s

performance. For example, if the reference current is set too

high, the recognition rate can be degraded significantly,

because a large number of LRS defect cells can take part in

the neural network’s operations. On the other hand, too many

defective columns are deactivated, which means the reference

current is set too low, the recognition rate can be degraded,

too. This is because too many columns are prohibited from

being involved in the neuron activation.

Real memristor crossbar with defectsIdeal crossbar without defects

- -- - -

(b)

stuck-at LRS

defect

stuck-at HRS

defect

good LRS

cell
good HRS

cell

I1+ I1-

Y1

I2+ I2-

Y2

Im+ Im-

Ym

I1+ I1-

Y1

I1+ I1-

Y1

I2+ I2-

Y2

Im+ Im-

Ym

-

(a)

F1 F2 Fm F1 F2 Fm

(a)

End

Measure all the column currents from the crossbar column by column

Deactivate the defective columns if the column currents are larger than

Iref (defined as severely-defective)

Perform the training and inference of the crossbar considering

the normal columns only (prohibit the severely-defective columns from

being involved in the neuron activation)

Program all the cells in the memristor crossbar to HRS

Neuron

deactivation

Performing

Neural

network's

operations

-
I2+

-
Im+

(b)

-

Y1

Iref

F

I2- Im-

stuck-at-LRS defect

stuck-at-HRS defect

Severely-defective columns

Deactivation control signal

I1+ I1-
Icomp

L L

Y2

F

L L

Ym

L L

C

Icomp

Iref

Deactivation
control signal

Current comparator

F

Fig. 2. (a) The flowchart of neuron deactivation and training/inference (b)

The schematic of memristor crossbar with neuron deactivation scheme and
the current comparator

III. SIMULATION RESULTS

 Fig. 3 shows the percentage of LRS defects per

column ranked in descending order when the entire crossbar’s

defect percentage is assumed as 20%. In Fig. 3, the neural

network implemented with the defective crossbar is composed

of only fully-connected layers. The network with fully-

connected layers is tested for MNIST data set. Here, the

number of input neurons is decided as 784 for testing MNIST.

For the tested neural networks, three cases of the number of

hidden and output neurons are assumed in the simulation. The

three cases are 213, 414 and 615 for Fig. 3(a), (b), and (c),

respectively. The vertical dashed lines in Fig. 3(a), (b), and (c)

indicate the percentage of LRS defects per column, at which

the reference current is defined. The reference current can be

found at the percentage of LRS defects per column showing

the best recognition rate of the neural network implemented

with the defective crossbar. During the training and inference,

the columns to the left of the vertical dashed line that have a

higher rank are deactivated.

Fig. 3. The LRS defect percentage per column versus the ranked column #
in descending orfer for (a) the number of crossbar's columns=213, (b) the

number of crossbar's columns=414, and (c) the number of crossbar's

columns=615

 Fig. 4(a) compares the MNIST recognition rate

between the ideal crossbar with no defects and the real

crossbar with the defect percentage=5%. Here we tested three

crossbars having different numbers of crossbar's columns.

They are 213, 414, and 615, respectively, as indicated in

Figure 3. For each case, the first bar is for the ideal crossbar.

The second bar is for the defective crossbar with the neuron

deactivation. The third bar is for the defective crossbar

without the neuron deactivation. In Fig. 4(a), when the number

of crossbar's column=213, the ideal crossbar has the

recognition rate as high as 96.2%. If we consider the real

crossbar with the defect percentage=5%, the recognition rate

is lowered to 90.8%, when the neuron deactivation scheme is

not used. If the severely-defective columns are deactivated,

the rate can be recovered from 90.8% to 92%, for the defect

percentage=5%. As the number of crossbar’s columns is

increased, the recognition rate is improved much better, as

indicated in Fig. 4(a). The rate loss of the neuron deactivation

scheme is only about 1%, compared to the ideal crossbar. Fig.

4(b) compares the MNIST recognition rate between the ideal

crossbar with the defect percentage=0% and the real one with

the defect percentage=20%.

Similarly with Figure 4(a), Figure 5(a) compares the

CIFAR-10 recognition rate between the ideal memristor

crossbar without defect and the real crossbar with the defect

percentage=5%. Here, we tested 3 cases of the number of

columns in the crossbar. They are 213, 414, and 615,

respectively. The neural network’s architecture for testing

CIFAR-10 is ResNet [14], [15]. In this simulation, it is

assumed that only the fully connected layers are implemented

with the memristor crossbars. The convolution layers are

assumed to be calculated by the traditional CMOS digital

circuits. Figure 5(b) compares the CIFAR-10 rate between the

ideal and real crossbars for the defect percentage=20%.

Fig. 4. The MNIST recognition rate with and without the deactivation

scheme with increasing the number of crossbar’s columns when (a) the
crossbar’s defect percentage=5% and (b) the crossbar’s defect

percentage=20%.

 One more thing to note here is another fabrication-

related factor that degrades the neural net is memristor's

conductance variation of HRS and LRS. Fig. 6 compares the

CIFAR-10 recognition rate with the memristor’s conductance

variation=0%, 5%, and 10% for different numbers of

crossbar’s columns. Here, the crossbar’s defect percentage is

assumed (a) 5%, (b) 10%, (c) 15%, and (d) 20%, respectively.

Fig. 6 indicates that the recognition rate is improved better as

the number of crossbar’s columns is increased.

On the other hand, the recognition rate is degraded

with increasing the memristor’s conductance variation. To

minimize the programmed conductance variation, we can use

the fine memristor programming scheme, where the

conductance variation of HRS and LRS can be suppressed less

than 5% [16]. If the memristors are programmed with the

moderate programming scheme, the programmed

conductance variation can be as large as 10% [16]. From Fig.

6(d), the rate loss due to the conductance variation can be

controlled as small as 0.6% for the number of crossbar's

100 200
0

4

8

12

L
R

S
 d

e
fe

c
t
%

p
e

r
c
o

lu
m

n

Ranked column # (a)

of crossbar cols = 213

100 200 300 400
0

4

8

12

L
R

S
 d

e
fe

c
t
%

p
e
r

c
o
lu

m
n

Ranked column # (b)

of crossbar cols = 414

100 200 300 400 500 600
0

4

8

12

L
R

S
 d

e
fe

c
t
%

p
e
r

c
o

lu
m

n

Ranked column # (c)

of crossbar cols = 615

213 414 615
60

70

80

90

100

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Number of crossbar columns (a)

 Ideal With neuron deactivation Without neuron deactivation

Defect % = 5%

213 414 615
60

70

80

90

100

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Number of crossbar columns (b)

 Ideal With neuron deactivation Without neuron deactivation

Defect % = 20%

columns=615, the conductance variation=10%, and the

memristor defect percentage=20%.

Fig. 5. The CIFAR-10 recognition rate with and without the deactivation

scheme with increasing the number of crossbar’s columns, when (a) the

crossbar’s defect percentage=5% and (b) the crossbar’s defect
percentage=20%. The first bar is for the ideal crossbar. The second bar is for

the defective crossbar with the neuron deactivation. The third bar is for the

defective crossbar without the neuron deactivation.

Fig. 6. The CIFAR-10 recognition rate with the memristance variation=0%,

5%, and 10% for different numbers of crossbar columns, when (a) the defect

percentage of memristor crossbar=5%, (b) the defect percentage of memristor
crossbar=10%, (c) the defect percentage of memristor crossbar=15%, and (d)

the defect percentage of memristor crossbar=20%.

IV. CONCLUSIONS

To compensate for malfunction of neural networks

caused from the fabrication-related defects, in this paper, the

simple neuron deactivation scheme was reviewed and

analyzed for various numbers of crossbar's columns, various

defect percentages, and various memristor's conductance

variation.

The column deactivation scheme reviewed in this

paper could be particularly useful for the edge intelligence

hardware. The column deactivation scheme does not need the

memristor defect map occupying a large amount of memory.

Moreover, the direct mapping from the calculated synaptic

weights to the crossbar can save the re-training time required

for the defect-aware training scheme significantly.

ACKNOWLEDGMENT

The work was financially supported by NRF-

2022R1A5A7000765, NRF-2019K1A3A1A25000279, NRF-

2021R1A2C1011631, NRF-2021M3F3A2A01037972, and

SRFC-TA1903-01. The CAD tools were supported by IDEC,

Daejeon, Korea.

REFERENCES
[1] A. Keshavarzi and W. van den Hoek, “Edge intelligence—On the

challenging road to a trillion smart connected IoT devices,” IEEE
Des. Test, vol. 36, no. 2, pp. 41–64, 2019.

[2] B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang,

“Memristor-based approximated computation,” Proc. Int. Symp.
Low Power Electron. Des., pp. 242–247, 2013, doi:

10.1109/ISLPED.2013.6629302.

[3] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “RRAM-
Based Analog Approximate Computing,” IEEE Trans. Comput.

Des. Integr. Circuits Syst., vol. 34, no. 12, pp. 1905–1917, 2015,

doi: 10.1109/TCAD.2015.2445741.
[4] L. Xia et al., “Technological Exploration of RRAM Crossbar Array

for Matrix-Vector Multiplication,” J. Comput. Sci. Technol., vol.

31, no. 1, pp. 3–19, 2016, doi: 10.1007/s11390-016-1608-8.
[5] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,

“Memristor crossbar-based neuromorphic computing system: A

case study,” IEEE Trans. neural networks Learn. Syst., vol. 25, no.
10, pp. 1864–1878, 2014, doi: 10.1109/TNNLS.2013.2296777.

[6] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov,

“Efficient training algorithms for neural networks based on
memristive crossbar circuits,” Proc. Int. Jt. Conf. Neural Networks,

vol. 2015-Septe, 2015, doi: 10.1109/IJCNN.2015.7280785.

[7] L. Xia et al., “Stuck-at fault tolerance in RRAM computing
systems,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 8, no. 1, pp.

102–115, 2017, doi: 10.1109/JETCAS.2017.2776980.

[8] C. Liu, M. Hu, J. P. Strachan, and H. H. Li, “Rescuing Memristor-
based Neuromorphic Design with High Defects,” Proc. - Des.

Autom. Conf., vol. Part 12828, 2017, doi:

10.1145/3061639.3062310.
[9] W. Choi et al., “WOx-Based Synapse Device with Excellent

Conductance Uniformity for Hardware Neural Networks,” IEEE

Trans. Nanotechnol., vol. 19, pp. 594–600, 2020, doi:
10.1109/TNANO.2020.3010070.

[10] J. An, S. Oh, T. Van Nguyen, and K. S. Min, “Synapse-Neuron-

Aware Training Scheme of Defect-Tolerant Neural Networks with
Defective Memristor Crossbars,” Micromachines, vol. 13, no. 2,

2022, doi: 10.3390/mi13020273.

[11] S. Jin, S. Pei, and Y. Wang, “On Improving Fault Tolerance of
Memristor Crossbar Based Neural Network Designs by Target

Sparsifying,” Proc. 2020 Des. Autom. Test Eur. Conf. Exhib. DATE
2020, pp. 91–96, 2020, doi: 10.23919/DATE48585.2020.9116187.

[12] T.-V. Nguyen, K.-V. Pham, and K.-S. Min, “Hybrid Circuit of

Memristor and Complementary Metal-Oxide-Semiconductor for
Defect-Tolerant Spatial Pooling with Boost-Factor Adjustment,”

Materials (Basel)., 2019.

[13] K. Van Pham, T. Van Nguyen, and K.-S. Min, “Partial-Gated
Memristor Crossbar for Fast and Power-Efficient Defect-Tolerant

Training.,” Micromachines, vol. 10, no. 4, Apr. 2019, doi:

10.3390/mi10040245.
[14] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 and CIFAR-

100 Datasets,” Available online

https//www.cs.toronto.edu/~kriz/cifar.html (accessed 20 Oct.
2018), 2018.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[16] K. Van Pham, S. B. Tran, T. Van Nguyen, and K. S. Min,

“Asymmetrical training scheme of binary-memristor-crossbar-
based neural networks for energy-efficient edge-computing

nanoscale systems,” Micromachines, vol. 10, no. 2, p. 141, 2019,

doi: 10.3390/mi10020141.

213 414 615
60

70

80

90

100

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Number of crossbar columns (a)

 Ideal With neuron deactivation Without neuron deactivation

Defect % = 5%

213 414 615
60

70

80

90

100

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Number of crossbar columns (b)

 Ideal With neuron deactivation Without neuron deactivation

Defect % = 20%

(a)

(d)(c)

(b)

213 414 615
60

70

80

90

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Number of crossbar columns

 Variation(σ) = 0% Variation(σ) = 5%

 Variation(σ) = 10%

Defect % = 5%

213 414 615
60

70

80

90

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Number of crossbar columns

 Variation(σ) = 0% Variation(σ) = 5%

 Variation(σ) = 10%

Defect % = 10%

213 414 615
60

70

80

90

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Number of crossbar columns

 Variation(σ) = 0% Variation(σ) = 5%

 Variation(σ) = 10%

Defect % = 15%

213 414 615
60

70

80

90

100

R
e

c
o

g
n

it
io

n
 r

a
te

 (
%

)

Number of crossbar columns

 Variation(σ) = 0% Variation(σ) = 5%

 Variation(σ) = 10%

Defect % = 20%

