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Abstract—Optimizing energy-efficiency of modern multicore
compute systems through online control is often regarded as both
promising and challenging. In this paper, we propose a dynamic
control technique for OpenMP workloads that exploits online
energy efficiency measures derived from the OpenMP runtime.
The proposed strategy relies on an automatic program phase
identification which detects workload execution patterns, used
by an online learning back-end. We design a synthetic bench-
mark template that makes it possible to produce benchmarks
with controllable characteristics for mimicking a wide range of
workload profiles. Experimental results show improvements on
a 20-core server when compared to default Linux governors.

Index Terms—Online learning, energy-efficiency, multicore
systems, OpenMP

I. INTRODUCTION

A major challenge of modern compute systems lies in
achieving the best possible energy efficiency for both em-
bedded and server-class / HPC systems. While minimizing
power consumption is rather easily achieved thanks to widely
supported control schemes such as frequency and voltage
scaling, directly optimizing energy efficiency requires to relate
energy consumption to an amount of compute, or to a fraction
of the entire compute job so as derive an efficiency measure.

Existing approaches that aim at optimizing energy-
efficiency of compute systems rely on various design tech-
niques as already surveyed in literature [3], [5]. Specifically,
dynamic voltage and frequency scaling (DVFS) and dynamic
power management (DPM) [8] are widely used to decrease
the CPU energy consumption. They are both controlled by
the OS which usually provides interfaces enabling users to
directly control those features (e.g. intel_pstate scaling driver).
More recent solutions promote the integration of emerging
technologies, e.g. non-volatile memories [21], [22].

Alternatively, performing energy-aware task allocation and
mapping optimizations on multicore architectures is also stud-
ied in the literature [7], [12]. Among those control methods,
we see in recent years a growing interest in using machine
learning [6], [15], [24], and more specifically reinforcement
learning [14], [16], [20]. The use of reinforcement learning
(RL) is proven effective when considering decision making
problems. Indeed, it theoretically guarantees overall conver-
gence to the best-performing solution among the available
actions, though convergence time is often prohibitive. Hence,
it is attractive for non-intuitive decision-making problem, i.e.
problems for which no satisfying system model can be built.

RL problems require careful definition of not only state but
also action for devising a satisfying controller, as described in
[9] and [7] for which action space lies on DVFS and DPM
for the former and task allocation for the latter.

This work assumes actions comprising DVFS and active
core count. The reward function used in our RL engine is
a relative energy efficiency metric that is extracted from the
OpenMP runtime as described in [4]. This approach has the
distinct advantage to require no prior program profiling nor
code annotation: it relies on the fundamental concept of chunks
that OpenMP uses for breaking down job into parallelizable
job fragments. A modified OpenMP runtime computes chunk
throughput referred to as CpS (Chunks per second), which is
therefore a compute performance measure. From the energy
consumption the runtime derives the CpJ (Chunks per Joule)
metric which expresses for the current workload how many
chunks are processed per Joule, i.e. an energy efficiency
measure. The same setup as that of the original contribution
[4] is here used as a frontend to the RL engine with additional
phase detection logic described later on in this paper.

This paper makes the following specific contributions:

o Formalization of the OpenMP metrics i.e. chunk, CpS and
CpJ, introduced in [4];

e A demonstration of the importance of managing both
frequency and computing resources assignment to a paral-
lelized workload, through a synthetic benchmark analysis;

¢ An online-learning approach to dynamically control par-
allelized OpenMP workloads;

o A phase detection module to optimize the previous con-
troller when applied to multiphases application;

Contrary to most recent investigations in the literature that
target Heterogeneous Multicore Systems (such as ARM
big. LITTLE systems) our approach targets server-class SMP
systems, i.e. 20-cores Intel Xeon in which no a priori assump-
tion can be made. It demonstrates the effective adaptation to
workload changes. We obtain an energy efficiency gain of up
to 67%, when applied to a synthetic multiphase benchmark,
while potential gains for single-phase program are up to 4.7x,
compared to default Linux governors.

II. RELATED WORK

There exist several machine learning-based approaches for
bettering energy efficiency through dynamic control. In [16]



Maeda-Nunez et al. proposed PoGo, an adaptive energy mini-
mization approach used as a Linux governor and tested on an
embedded system. A Q-Learning algorithm is implemented as
a decision unit, and the overall technique demonstrates energy
savings compared to the existing Ondemand Linux governor
[23]. This work has been extended in [19] where the proposed
method considers both intra- and inter-application changes
involving transfer-learning techniques. The method appears
promising for multicore systems, even though it assumes one
task per core. In [20], a Q-learning based approach is proposed
for idle period management of multicore processors showing
the efficiency of RL for that application. Finally, Basireddy et
al. proposed in [15] a workload-aware runtime management
method for improving energy efficiency in HPC systems.
They implemented a binning based learning algorithm [13]
to design the decision unit, and used hardware performance
counters for the workload characterization. In Alessi et al.
[11], the authors proposed an OpenMP specific approach that
consists in extending the existing OpenMP API with Energy
Savings features. It allows taking decision directly at runtime
for energy minimization.

None of the aforementioned works target optimizations of
OpenMP parallel applications through runtime using RL. The
present work aims at investigating this opportunity and shows
promising results on energy efficiency improvement through a
suitable resource allocation at runtime based on RL.

III. CHUNKS FORMALIZATION

A. Description of the chunk metric

An OpenMP chunk is defined as an iteration of a loop
flagged with an OpenMP directive, thereby parallelizable as
per the Programming Model specification.
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Fig. 1: Execution steps of OpenMP workloads.

Figure 1 shows a conceptual representation of a typical
OpenMP use case from user level to hardware level. The flow
depicts the process from the source code to the execution
on the multicore system equipped with hardware counters.
Chunks, being loop iterations, are hardware agnostic. Once
the application compiled for a given hardware architecture,
chunks are handled by the runtime that distributes chunks to
threads for parallel processing. Threads in turn execute a given
number of iterations (i.e. chunks) onto processor cores, whose
behaviour is monitored by the hardware counters, producing
execution statistics.

B. Formalization

We focus the formalization on parallel workloads, and
thereby leave aside the serial code which is not subject to
parallel execution. Parallel workloads can be described as a
finite number of chunks, that can be executed either in series or
in parallel. Let us denote by Z the set of instructions supported
by the considered execution platforms.

a) Parallel workload: A parallel workload Par = {C'}
is a set of chunks C' = {ij}. Each 4, represents an instance
of an instruction that belongs to Z.

b) Architecture: We define an execution architecture
Arc = (Proc, Mem) of a compute system as the combi-
nation of the processing elements Proc and the associated
memory resources Mem. Let & = {Arei} denote the set of
all possible architectures. An architecture can be monitored
through hardware counters and energy consumption sensors.
Let us consider V' = (vq,v9,...,v,) as a vector of values
corresponding to measured hardware counters and energy
consumption. For instance, these values can be the number
of cache misses, hits, memory access such as read and write,
etc. The set of all such vectors is denoted by V.

c) Execution Characterization: We define the execution
function Ex : 7 x o — V, which outputs a vector of metrics,
given the execution of an instruction on an architecture.

From this definition, the execution of a chunk C' = {i;} on
an architecture a € « produces a vector V = (v1,va, ..., vp)
as follows: Vij, € C, Ex(iy,a) = (v, vk ... vF) such that
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Hence, a chunk is a workload description of coarser granu-
larity than instructions. The result of the execution of a chunk,
corresponds to the sum of the execution of all instructions
included into the chunk. Therefore, monitoring chunks gives
a view of the workload execution as a whole, whereas global
tracking using hardware counters can only be done after
data fusion, as counters give only specific information about
independent events.

d) Parallel execution of a workload: When executed, a
parallel workload Par will be dispatched among a number of
threads according to the target architecture and user decision.
We define 7" = {thy, tha, ...th, } the set of threads thy, (yc1..n)
used to execute Par. Let us denote by gy, (ke1..n) € P(Par)
the set of chunks assigned to a thread thy for execution, such
that: ¢ Ugo U ... U g, = Par

e) Performance and energy-efficiency: Given a parallel
workload Par, its execution time dp,,. is given by the maxi-

mum value of d;p, ., . » Where dpp, = CZ dc, represents
i€k
the execution time of all chunks in g, assigned to thread thy.

Similarly, the energy consumption €p,, of a parallel work-
load Par is defined by the sum of Ethy ket n)> where €5, =

> ec, represents the execution energy for all chunks in g
Ci€q
assigned to the thread thy.

The amount of chunks executed per second can be easily
calculated: it is defined as the Chunk per Second (CpS). Sim-



ilarly, the amount of chunk executed per Joule consumed can
be derived: it is defined as the Chunk per Joules (CpJ). These
two metrics introduced in [4] enable to describe respectively
the performance and energy efficiency of parallel OpenMP
workloads. Therefore, we define the next two metrics:

1
Per f(Par) = S * Z gk (1
qr€P(Par)
and
EnergyEff(Par) = > |al 2
ar qr€P(Par)

Formula (1) defines the chunk-based performance metric
when executing a parallel workload, while formula (2) indi-
cates its energy-efficiency. They are respectively defined in
terms of CpS and Cpl.

Discussion: We formalize chunks as a relevant metric to
monitor parallel workload execution at runtime. Moreover, for
performance and energy efficiency monitoring purpose, CpS
and CpJ metrics are defined based on the chunks.

In this work we only consider parallel workloads. However,
sequential workloads can be seen as mono-threaded parallel
workloads i.e. 7 = singleton. Hence, following this formal-
ization, one could easily apply formula (1) and (2) by simply
replacing the |gx| terms by 1. Indeed, a sequential workload
is analog to a parallel workload comprised of a single chunk.

IV. APPLICATION CHARACTERIZATION AND ENERGY
EFFICIENCY OPTIMIZATION

A. Synthetic benchmark template

In order to assess potential gains in term of energy efficiency
on the chosen symmetric dual-socket system we design a
synthetic parametrizable benchmark template from which we
derive benchmarks with different profiles. The template is
built on 2 consecutive and tunable code fragments covering
memory-intensive operations and compute-intensive opera-
tions. Thus, applications are built to have different behaviours,
according to both their CPU intensity and memory intensity.
Fig. 2 describes the benchmark template.

00 #include <omp.h>

01 // Initialization

02 Some environment definitions

03 // Parallelization

04 omp_set_num_threads (nthreads);

05 // OpenMP directive

06 #pragma omp parallel for schedule(dynamic, 1)

07 for (i=0; i<n; i++){

08 for (3=0; 3<100; J++){

09 if (J < coef){

10 MEM-intensive code fragment
11 }

12 else{

13 CPU-intensive code fragment
14 }

15 '}

16 return 0;

Fig. 2: Benchmark template.

The memory intensive code block performs various opera-
tions on large arrays such as additions, copy, permutations. The
intensity of the memory demand depends on the arrays’ size,
dimension, and the randomness of the access patterns to the
arrays. The compute-intensive code block is made of linear
algebra and combination of arithmetic / trigonometric func-
tions, involving high computational methods such as Fourier
serial analysis and various other floating-point operations. The
amount of stress applied to the CPU(s) depends on the number
of function calls, and their properties. Hence, those blocks
are elementary codes representative of the two characteristics
we want to emphasize. Finally, to derive a given benchmark,
the ratio between CPU and memory intensity can be set by
modifying the “coef” value.

B. Synthetic Applications Characterization

From the benchmark template described above, 6 bench-
marks are produced: CI00MO, C98M2, C96M4, CIOMIO0,
C80M20, COM100. The CxMy naming reflects the balance
between the two targeted stress modes: x is the percentage of
compute intensity and y that of memory intensity. Therefore,
the COM100 and C100MO benchmarks are purely memory
intensive and CPU intensive, respectively. We assign threads
to up to 19 cores of the 20-core Xeon server, the 20" being
assigned to the metrics collection process. All of the values
reported in the sequel are read out from the Intel hardware
performance monitoring counters using the Intel PCM tool
[1], and depicted through the net charts shown in Fig. 3.
Table I lists all of the considered metrics, sorted according to
their nature in term of either compute or memory orientation.
Fig. 3 shows that each application has a unique profile, and
stresses the CPU and the memory, with various impacts on
the counters. Indeed, CPU-intensive benchmark C100M0 has
all of the correspondingly flagged counters at their maximum
value. Conversely, the memory-intensive benchmark COM100
has all of the memory-oriented counters at full scale.

C. Energy Efficiency

For each of the 6 proposed benchmarks we perform an
exhaustive characterization, i.e. run the application with each
possible configuration (frequency, number of cores) and report
the average CpJ over the entire benchmark duration. Note: The
energy consumption value used to compute CpJ is read out
from the Intel’s RAPL model specific registers (MSRs) [10].

The results are depicted in Fig. 4, where the best configu-
ration is annotated. Note the variety of optimal configurations
among the applications. It emphasizes the duality between

[ CPU intensity oriented [ Memory intensity oriented

IPC = instructions per CPU cycle | RW = MEM Read and Write

EXEC = instructions per nominal
CPU cycle

L3MB = L3 cache external memory
bandwidth

L2MPI = number of L2 (read)

L3HIT = L3 (read) cache hit ratio . . )
cache misses per instruction

L3MPI = number of L3 (read)

INST = Instructions retired . . )
cache misses per instruction

TABLE I: Intel PCM counters description.
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Fig. 3: Applications profiling according to PCM counters.
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Fig. 4: Applications energy efficiency (i.e. CpJ) characterization and best configuration.

CPU intensiveness and memory intensiveness within the ap-
plications. Indeed, the two extreme applications (C100M0 and
COM100) possess two opposed best configurations CpJ-wise
regarding the number of compute resources allocated, i.e. 1
core for the memory intensive application and 19 cores for
the CPU intensive application (maximum core count available,
with 1 core per thread).

To observe the impact of applying the best configuration
of an application while running on a compute system, we
compare the average CpJ and CpS with executions with
Linux Powersave, Performance, Ondemand and Conservative
governors. Results are reported on Table II.

We obtain potential gains in energy efficiency from 10%
to 469%, compared to usual Linux governors. Performance
loss is observed for the most CPU intensive applications, but
it remains below 20%, which is reasonable comparing to the
significant improvements in energy efficiency. The main issue
with Linux governors is the lack of thread to core control. It
highlights the benefits controlling the resource allocation of a
parallel application. Hence the use of online learning described
later to dynamically adapt the compute configuration.

Benchmark | CI0OMO C98M2 C96M4  C9OMI0  C80M20  COMI100
Best Conf. CpJ | 3866 2505 1581 818 517 336
i.e. Reference  CpS | 303k 170k 90k 40k 25k 12k
o | B

Performance  CpS -12% -11% -19%

cp | 6@ WM BE Ea R
powerswe  Cps | [0S |9 [aoml  |Sew  [oas

o |oE W R A

Ondemand CpS -12% -14% -17% -1%

o | oW W BE B

Conservative  CpS -12% -14% -19% -16%

TABLE II: Energy efficiency (CpJ) and performance (CpS)
gains of the benchmarks’ best configuration, when compared
to Linux governors: Powersave, Performance, Ondemand and
Conservative.
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V. CONTROL SYSTEM FOR STATIONARY WORKLOADS

Here we describe a dynamic control system that performs
both neural network training and configuration control at
runtime. The system is depicted in Fig. 5.

NN (see Section V.A)
State: Action:
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OpenMP
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Fig. 5: Control system design.

It is based on the reward concept used in reinforcement
learning (RL) among others. Here, we only train our network
to perform combinatorial inference, that is to say a purely
current state-dependent best action prediction (not function
of the previous state). The framework has been developed
with genericity in mind such that RL (therefore taking past
system states into account) is supported, though this is be-
yond the scope of this paper. The environment represents
the multicore compute system running OpenMP workloads.
For each possible state value the quality of each action (i.e.
configuration) is evaluated using the reward function that is
a direct function of the CpJ metric. Our approach towards
obtaining an efficient controller relies on a compact state
definition for ensuring quick exploration and convergence. For
that reason state is being defined as the compute configuration
(i.e. current frequency and active cores count) alongside CpS
value.

A. Decision Making Process

The online decision making process is based on learning
by experience i.e. learning-by-doing. In this terminology,
decisions are called actions and the environment is defined by
states. Decisions start to be taken after the end of the learning
process, known as exploration phase. During the exploration
phase random actions are taken, in order to find the best action
for each state. Actions are rewarded according to their benefits.



The advantage of using a neural network (NN) here lies in the
implicit ability to perform interpolation i.e. ability to infer an
action for an unknown state based on the knowledge acquired
during the exploration phase.

In our context, the state is defined by the configuration of
the system coupled with the CpS value i.e. the state space is
not discrete. The action is a new configuration to apply, and
the reward is the resulting CpJ. The Tensorflow API [17] is
used to build the neural network, using Keras [2] as frontend.

B. Results and Discussion

The design is evaluated with the DGEMM benchmark [18],
on the same Xeon server. An ad-hoc exaustive search has
revealed the best configuration for this workload to be 18 cores
at 2.1GHz with a mean CpJ = 166. The sampling period is set
to 500ms. The action set is defined as follows:

o Number of cores (i.e. #core): 19 cores available, allocated
equally between the two sockets.
o Frequency: from 1.2GHz to 2.2GHz.

In our experiments, the exploration phase is arbitrarily set to
2048 iterations (i.e. 1024s) which happens to be relatively
short in comparison to the usual amount of data used to train
neural networks in general. No data-augmentation technique
has been used for bettering the quality of the dataset. We
nevertheless observe on Fig. 6 that it is enough for our
system to reach near-optimal performance. Fig. 6a shows
a plot CpJ over the execution. Note the rather stable Cpl,
within 3% of the known best configuration. Some fluctuations
are visible, incurring transient sporadic modifications of the
chosen configuration.

Gains: When compared to the default Linux governors
available on our Intel Xeon server, our method shows the
following gains: 10%, 17%, 11% and 10%, respectively com-
pared to the Performance, Powersave, Ondemand, Conserva-
tive Linux governors. Those results are similar to the C100M0
benchmark, as DGEMM is a compute-intensive workload.
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Fig. 6: Online learning variables evolution, when running
DGEMM benchmark.
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Fig. 7: Control system design.

VI. CONTROL SYSTEM FOR MULTI-PHASES WORKLOADS

Stationary workloads such as those presented previously are
not representative of real-life applications such as multimedia
decoders, or cloud applications which usually go through many
types of workloads, hence different execution phases. To adapt
our control system to multiphases workloads, we propose a
phase detection engine. Phase information is retrieved using
a specific autoencoder (AE) design described below. The
resulting system is depicted on Fig. 7.

A. Autoencoder

Autoencoders are specific neural network architectures used
to produce data encodings in an unsupervised way. They are
trained in supervised mode, such that the produced output
is identical to the input. The key concept of this type of
neural networks relies on reducing the dimensionality of the
input, through successive layers of neurons until the inter-
nal “bottleneck” layer that marks the boundary between the
encoder and the decoder. This leads to a compact internal
representation of the input (lossy compression) that is then
expanded in the decoder until the output. Intuitively, backprop-
agation algorithm (training) attempt to find the most prominent
features in the input vector across the training dataset, such
that loss (reflecting the difference between input and output)
is minimized.

CpS
#cores
Freq

CpS
#cores
Freq

Input Layer

S
[
>
©
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Fig. 8: Designed autoencoder.

Here, we use a specific autoencoder architecture proposed
in [4], illustrated in Fig. 8. It is trained offline to reproduce the
CpS value and the system’s configuration data (i.e. the number
of cores and the frequency). Its internal layer is expected
to extract the information about the phase of the running
application, referred to as code in Fig. § .

B. Results and Discussion

The overall design is evaluated with a two-phases syn-
thetic application. It is derived from two synthetic workloads
different from those of the benchmark suite. One phase is



CPU intensive similar to C/00MO0 and its best configuration is
19 cores, f=2.2GHz. The second phase is memory intensive,
with the following best configuration: 4 cores, f=1.3GHz.
Experimental setup is same as for V-B.
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Fig. 9: Online learning plot for the 2-phase benchmark.

As shown in Fig. 9a, the 2 phases are clearly visible through
their respective distinct CpJ levels, resulting from the different
natures of the performed computations. Though not visible,
the autoencoder already produces phase information from the
early beginning of the execution. The online controller neural
network is thereby trained with this information, until time
1024s. We observe from that point on that the system operates
as expected, uniquely identifying the 2 phases and adapting the
configuration. The online controller selected 19 and 5 cores
for the 2 phases, which matches the known best configuration
for each. Frequency however oscillates between 1.2GHz and
1.4GHz which is significantly off compared to the known best
configuration, suggesting a longer training time would help
further improve energy efficiency.

Gains: When compared to the default Linux governors,
our method shows the following global gains: 51%, 7%,
51% and 50% respectively compared to the Performance,
Powersave, Ondemand and Conservative Linux governors.
Potential gains of the individual phases have been assessed
through offline characterization and extending the learning
could result in gains ranging 34% and 136% compared to the
default governors.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we extend the work introduced in [4],
where we proposed energy efficiency metrics coupled with
preliminary work on online workloads analysis. We propose
a dynamic control method of parallel OpenMP workloads
based on online learning, with an autoencoder as back-end
for workload phase detection. The resulting system shows
excellent capabilities in finding the best configuration, without
prior knowledge of the running workload. Experimental results
reveal potential energy savings by up to 4-fold for some
synthetic benchmarks compared to default Linux governors.
Similar results can be obtained on multi-phase workloads.

Future works: In this work we consider only HPC oriented
benchmark, with runtimes in hours. Hence, the neural network

training periods has not been discussed. This aspect would
certainly require investigations in future works. Other future
works rely on demonstrating the effectiveness of the system on
various real-world applications w.r.t. constraints such as qual-
ity of service. Further studies will consist in investigating other
compute system architectures such as heterogeneous multicore
platforms, as a proof of versatility. Finally, the impact of
concurrent workloads should be considered to address multi-
programming issue.
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