
Design Space Exploration Framework for
Tensilica-Based Digital Audio Processors in

Hearing Aids
Jens Karrenbauer, Lukas Gerlach, Guillermo Payá-Vayá and Holger Blume

Institute of Microelectronic Systems
Leibniz University Hannover

Appelstr. 4, 30167 Hannover, Germany
{karrenbauer, gerlach, guipava, blume}@ims.uni-hannover.de

Abstract—Choosing a suitable processor architecture for a
hearing aid is a difficult task. Various aspects have to be taken
into account, like power consumption and silicon area. Also,
the computational performance and flexibility of an architecture
are essential. Therefore, a wide variety of design goals must be
weighted against each other before a final decision for the archi-
tecture can be made. In this paper, several configurable audio
processors are evaluated, using five commonly known acoustic
beamforming algorithms. In order to reduce the exploration time,
this paper presents a partly automated design space exploration
framework. The hearing aid algorithms are implemented in fixed-
point representation to reduce the computational complexity. This
framework includes a fixed-point analysis and an automated
reference code generation using MATLAB tools. With the Xtensa
Xplorer, different configurations of the Tensilica-based processor
architecture are profiled. Finally, a case study is presented to
show the usability of the proposed framework.

Index Terms—Design Space Exploration, Tensilica Hifi, Ten-
silica Fusion, MATLAB, Hearing Aid Processor, Low-Power,
Acoustic Beamforming

I. INTRODUCTION

Even in difficult acoustic scenarios with background noise
and dialogues, the human ear can extract and understand
individual conversations. When a hearing-impaired person
cannot distinguish between these, it is called the cocktail party
problem. Regarding recent studies of the World Health Orga-
nization (WHO), around 466 million people all over the world
have a severe hearing loss [1]. A modern digital hearing aid
could help to reduce the effect of the hearing loss with different
monaural or binaural algorithms. One example algorithm to
reduce these effects is an acoustic beamformer [2] [3]. This
algorithm steers a beam to the desired direction of speech
while attenuating the background noise. Therefore, a digital
signal processor (DSP) processes the input signals of multiple
omnidirectional microphones placed on one (monaural) or two
(binaural) hearing aids. Due to the limited power-budget, chip
area, and low processing time of a hearing aid, the choice of
a suitable hardware architecture for the hearing aid algorithms
is a difficult task.

This paper aims to evaluate different digital audio proces-
sor configurations, based on five beamforming algorithms of

different computational complexity. To keep the design and
evaluation time low, a design space exploration framework is
proposed. Therefore, MATLAB fixed-point code is analyzed
and converted into a hardware-specific fixed-point C-code. The
different hardware configurations are profiled with the built-
in profiling tools of the Xtensa Xplorer using the generated
C-code.

The remainder of the paper is organized as follows: Sec-
tion II gives an overview of acoustic beamforming algorithms
and how they create a focused beam from a set of at least
two omnidirectional microphones. In Section III, the basic
processor architecture and the different configurations are
briefly introduced. Furthermore, Section IV describes the pro-
posed framework for the design space exploration and in the
evaluation in Section V a case study to showing the usability
of the framework is presented. The paper is concluded in
Section VI.

II. ACOUSTIC BEAMFORMING ALGORITHMS

In order to get a good overview of the performance of
the different hardware configurations, different beamforming
algorithms are used in this paper. The block diagrams of each
of them are presented in Fig. 1. A beamformer can generate
a directed microphone characteristic from different omnidi-
rectional microphones. Therefore, at least two microphones at
different locations are needed. When assuming the distance
to the sound source is significantly larger than the distance
between the microphones, the angle of incidences for the
noise and the desired speech is the same. Therefore, if the
distance d between the microphones is known, it is possible
to calculate the origin of a signal based on the transit-time
difference between them.

A fixed beamformer is a simple algorithm to solve this
task. Fig. 1a shows a block diagram of such a beamformer.
Basically, the signals from the rear microphone are subtracted
from the front microphone. However, the signals from the
rear microphone are delayed before subtracting. Based on this
delay (τ ), it is possible to attenuate different signals at different
angles in the microphone characteristic. To block noise from



DELAY
τ

GAIN
b

Σ
+

-Front
Mic

Rear
Mic

d

x1(t)

x2(t)

y(t)
(a)

d

Front
Mic

Rear
Mic

DELAY
d/c

DELAY
d/c

GAIN
b

x1(n)

x2(n)

y(n)

(b)

Front
Mic DELAY

d/c 

DELAY
d/c

Rear
Mic

DELAYΣ

Σ

Σ

Adapt.
Filter

y(n)x1(n)

x2(n)

+

-

-
+

+

-

d

(c)

y(n)b(n)

+
-

wc1

ΣΣ
wc2

Blocking
matrix
B

x1(n) Adaptiv
Filter

Front Mic

Rear Mic

DELAY

(d)

Front
Mic
Left

Rear
Mic
Left

Front
Mic

Right

Rear
Mic

Right

FFT x

SV1(DOA)

∑

FFT x

SV2(DOA)

FFTx

SV3(DOA)

FFTx

SV4(DOA)

Y1(n)

+ +

+ +

MVDR beamformer

(e)

Fig. 1: Block diagrams of different beamforming algorithms:
(a) Fixed beamformer [2] (b) Adaptive Gain beamformer [4]
[5] (c) Adaptive Filter beamformer [6] (d) General Sidelobe
Canceler (GSC) beamformer [7] (e) Minimum Variance Dis-
tortionless Response (MVDR) beamformer [3] [8].

the back of the head, the delay (τ ) should be set similar to
the time, which the sound needs to travel between the two

microphones. With this configuration sound arriving from 180◦

degree will at first arrive at the rear microphone. While the
sound propagates further to the front microphone, the delay
unit delays the rear signal. The two signals arrive at the same
time at the subtraction unit and wipe each other out. With
this configuration, the fixed beamformer creates a cardioid
microphone characteristic, where signals from the back are
canceled. Setting the delay time (τ ) to zero, signals arriving
from 90◦ are annihilated. With delay time in between, it is also
possible to create super- or hyper-cardioid characteristics. By
the gain b following the delay unit, it is possible to balance
different amplification levels of the two microphones, e.g.
based on production margins.

As the name fixed beamformer implies, the microphone
characteristic of such a beamforming algorithm is once con-
figured and can never be changed during the run time. For
changing the characteristic during run time, more advanced
algorithms are used. They require more complex hardware
to do the processing in real-time. In addition to the fixed
beamforming algorithm in Fig. 1, an adaptive gain [4] [5],
an adaptive Filter [6] a General Sidelobe Canceler (GSC) [7]
and a Minimum Variance Distortionless Response (MVDR)
[3] [8] beamforming algorithm are used as a reference. The
fixed beamformer is quite a simple algorithm that can be
implemented only using a FIR filter with eight taps and a
single MAC unit. The other algorithms are more advanced.
The adaptive gain beamformer (Fig. 1b), for example, creates
two different characteristics and calculates a cross-correlation
between them subsequently. A Least Mean Square (LMS) or
Normalized LMS is used to select a suitable gain.

The adaptive filter beamformer (Fig. 1c) is based on the
same concept as the adaptive gain filter, but the gain unit is
replaced by an adaptive filter with 16 filter taps instead of
one gain. The FIR filter allows the beamformer to attenuate
different sound sources from different directions independently
in each frequency band. To compensate for the delay of the
filter, an additional delay filter with four taps is added. To
adapt the coefficient of the FIR filter, a NLMS or a Recursive
Least Squares (RLS) algorithm is used. The RLS is not only
using the current value, but also the values of the previous
iteration. With the additional computational complexity, the
filter converges faster.

In the GSC beamformer (Fig. 1d), the signal processing
is separated into two different paths. In the upper signal
path, the microphone signals are weighted equally and added
afterwards. The sum is then delayed to match the processing
time of the lower path. In this path, a blocking matrix in com-
bination with an adaptive filter is used to model the noise. This
model is then subtracted from the weighted signal to remove
the noise. In [9] the improvement of speech intelligibility is
shown by the different beamformers. The fixed beamformer
gives the least improvement, the adaptive filter beamformer
a little more, the adaptive gain beamformer even more, and
the GSC beamformer offers the most speech intelligibility.
However, these beamformers work under the assumption that
the desired signal is always in the range of 0◦ to 90◦ and,



therefore, only attenuate signals in the range of 90◦ to 180◦.
These algorithms neglect interference signals coming from the
front.

The MVDR beamformer (Fig. 1e) is the most advanced
algorithm among the given choices. It can steer a beam
to focus a speaker in between 0◦ and 90◦ using binaural
information. Therefore, the beforehand guessed Direction Of
Arrival (DOA) is used to multiply the inputs with a complex-
valued Steering Vector (SV). This is the only algorithm among
the beamformers operating in the frequency domain. As a
consequence, all operations shown in the figure are using
complex-valued operands, which adds a higher computational
effort or special hardware requirements to the algorithm. In
addition, this beamformer is a frame-based algorithm, which
operates on a window of 256 samples. The FFTs, depicted in
Fig. 1e, are not taken into account in later comparisons because
they are a pre-processing step and not part of the actual
beamforming algorithm. In a real hearing aid application, this
beamformer is a part of an algorithmic chain, which includes
the classification and estimation of the DOA, as presented
in [3]. Because all the other parts are also operating in the
frequency domain, the FFT is done at the beginning and the
input of the beamformer is already in the frequency domain.
The FFT blocks are only shown in the block diagram to
indicate that the beamformer does not operate in the time
domain.

The different complexity of the beamforming algorithms
adds several dimensions to the design space. However, this
is necessary to get an overview of the performance of the
architecture with a different computational load. Nevertheless,
it also increases the elaboration time for the exploration
because the algorithms have to be adapted to run on the
different hardware configurations.

III. PROCESSOR ARCHITECTURE ORGANIZATION

Selecting a suitable processor architecture for a hearing aid
application, different factors have to be taken into account.
It is a trade-off between power consumption, chip area, per-
formance, and flexibility. A general-purpose processor (GPP)
offers high flexibility, but therefore it has to implement lots
of different hardware units, which increase the used chip
area. On the opposite, a dedicated full custom hardware unit
has the best performance and power consumption but nearly
zero flexibility because all the units are specially designed
for a particular task. The Application-Specific Instruction-set
Processor (ASIP) combines the benefits of both architectures
[10]. A Tensilica LX7 [11] is an example of such an ASIP. It
consists of a 32-bit reduced instruction set computer (RISC)
architecture using a 5 stage pipeline. Using the Xtensa Xplorer,
a Tensilica/Cadence designer tool [12], it is possible to modify
the hardware configurations. For example, the size of the local
memory or number of register files is configurable. Moreover,
different arithmetic units, like a divider or a multiplier, can
be added and adjusted. Also, a single- or double-precision
floating-point unit can be added. As mentioned before, all
the hearing aid algorithms are implemented in fixed-point

TABLE I
COMPARISON OF SOME HARDWARE SPECIFICATION OF

DIFFERENT TENSILICA CONFIGURATIONS AND EXTENSIONS.

Basic Hifi Fusion
LX7 4 F1 G3 G6

Load (bits) 1x32 2x32 1x32 2x128 2x256
Store (bits) 1x32 1x32 1x32 1x128 1x256

ALU ops/cycle∗ 1 4 2 4 8
MACs/cycle∗ - 4 1 4 8

Issue Slots 1 4 2 4 4
SIMD∗ - 2 - 4 8

Pipeline Stages 5 5 5 7 7
∗32-bit operands

representation to save not only the computational overhead but
also the cost of the additional hardware. Therefore, floating-
point units are never used in this work, but the impact of
different arithmetic units is evaluated later in this work.

Furthermore, custom instructions can be generated using the
Tensilica Instruction Extension (TIE). These instructions are
written in a Verilog like language. Not only instructions but
also register files or hardware tables can be constructed by
TIE. Regarding the size of these registers, Single Instruction
Multiple Data (SIMD) implementations are possible. If two
32-bit wide operands are placed into one 64-bit wide register, a
single 64-bit multiplication instruction can execute two 32-bit
multiplications at the same time. Also, a Very Long Instruction
Word (VLIW) implementation is possible with the Flexible
Lenght Instructions eXtension (FLIX). In a VLIW approach,
more than one operation can be executed in parallel. After
building the configuration, the Xtensa Xplorer generates a
corresponding compiler, which supports the different hard-
ware modifications of the architecture, even with high-level
languages like C. All these different configuration options
increase the design space.

Moreover, Tensilica/Cadence offers different extensions to
add to the basic configuration of the LX7. These extensions
are a collection of pre-written TIEs and FLIX. For the hearing
aid purpose, mainly the cores from the Hifi and Fusion family
are interesting because they are designed especially for signal
processing while remaining a relatively small core size. The
later shown case studies focus mainly on the the Hifi4 [13],
the Fusion F1 [14], the Fusion G3 [15] and the Fusion G6
[15]. Table I shows some specifications of the basic core and
the extensions. The configurations mainly differ in the bit-
width of the arithmetic units and the size of the load/store
units. Furthermore, the different configurations have a different
amount of added special registers. Particularly special is the
configuration of the Hifi 2 extension [13]. The native bit width
of the added arithmetic units is reduced to 24-bit instead of 32-
bit as for the other configurations. Through the smaller word
length, the hardware units can be made smaller, but also the
calculation results are more inaccurate. In this work, a word
length of 32-bit will be used for the evaluation, to achieve



Fusion F1

Fixed-Point analyses

Fixed-Point coder
Fusion G3

Fusion G6

HiFi 4

HiFi 2

Cycle-accurate
profiling (ISS)

Hardware evaluation

Build
automation

Beamforming
reference

Fig. 2: Proposed Design Space Exploration Framework, using
commercial tools like MATLAB and Xtensa Xplorer.

more precise results for the hearing aid algorithms. Therefore,
the Hifi2 is not taken into account in the rest of the paper.

The additional extensions add even more complexity to
the design space. Furthermore, through different data- or
hardware-dependencies, the palatalization of the different
beamforming algorithms is not optimal. Moreover, not every
instruction can be issued in every issue slot. In the Hifi4, for
example, most of the special arithmetic units for processing
the audio data are located in issue slots two and three. In
contrast, the load and store units are only available at slots zero
and one. These effects have to be considered while analyzing
the performance of each configuration. Therefore, a simple
estimation of the performance of each algorithm is not possible
and the algorithms have to be compiled and scheduled on each
different hardware configuration, using the given Instruction
Set Simulator (ISS) for each configuration. Because of this, the
exploration time is increased enormously. To keep the effort of
an exploration as low as possible, a design space exploration
framework is necessary.

IV. DESIGN SPACE EXPLORATION FRAMEWORK

Due to the already shown vast possibilities of different
configuration options of the Tensilica cores and the multiple
reference algorithms, a design space exploration framework is
suggested in this Section. With the help of this framework,
it is possible to explore the different benefits of the cores.
The proposed framework is shown in Fig. 2. As stated in
Section II, the reference algorithms are five different types
of beamforming algorithms, all in fix-point representation.
These algorithms are all written in MATLAB scripts. At first,
a fixed-point analysis is performed to adapt the hardware
capabilities of the individual hardware configurations, like the
wordlength or the size of the arithmetic units. Therefore, fixed-
point objects (fi-objects) have to be created. Fi-objects can
model, for example, the wordlength or the fractional point
of a variable. Furthermore, the behavior of the arithmetic
operations of the hardware can be configured, like the rounding
or overflow behavior.

After finishing these configurations, a fixed-point analysis
can be performed with these objects and the MATLAB tool-
boxes [16]. If enough input samples are available, MATLAB

can execute the algorithms with floating-point numbers to
analyze the range of the computations. Thereafter, a suitable
fractional format is suggested. In order to have a valid sug-
gestion, a wide variety of inputs have to be analyzed to match
as many scenarios as possible. If the range of input is too
small, later on, overflows or range extensions can happen. This
might cause wrong results. Therefore, MATLAB also offers
to include a certain safety margin. After completing the dif-
ferent fixed-point configurations, the fixed-point beamforming
algorithms can be run by MATLAB. To verify that the fixed-
point configurations perform accurate enough, the results of
these fixed-point executions are compared to the floating-point
results. The metrics used in this framework are the absolute
and mean differences between the two implementations. In
the next step, the fixed-point MATLAB code is automatically
translated into C fixed-point code, using the MATLAB Coder.

This generated code represents the configured fixed-point
options and handles all the necessary operations to match
the configured formats, e.g. the shift before and after certain
mathematical operations like an addition. Afterwards, the code
is imported into the workspace of the Xtensa Xplorer. To
verify that the fixed-point models of the hardware are done
correctly in MATLAB, the code is compiled and simulated
with the given tools. The results from these simulations are
then again compared to the MATLAB floating-point results,
using the mean and absolute difference. If the arithmetic units
were modeled correctly, these results should not differ more
than a few digits. These inaccuracies between the models are
based on slightly different overflow and rounding behavior.

Therefore, the same audio files are used as input for the
beamforming algorithms as for the MATLAB reference. The
results of the Xtensa Xplorer are written into a file and
imported to MATLAB. Thus, the comparison can be computed
automatically. After the verification of the algorithms, they can
be profiled using the given instruction-set simulators (ISS) for
the different hardware configurations.

V. EVALUATION

A case study is done to evaluate the effectiveness of the
suggested framework. Therefore, different hardware configu-
rations are profiled using the five beamforming algorithms.
For profiling, different metrics are considered. At first, this
evaluation takes the chip area and power consumption into
account. The Xtensa Xplorer offers a rough estimation based
on a certain technology and operating frequency. Fig. 3 shows
the results of an estimation with a 40 nm TSMC technology at
100 MHz. Unfortunately, the tools do not take the switching
activities of the profiled application into account for the power
estimations. Therefore, a default switching module is used
for the calculations. Furthermore, it is also not possible to
configure the target frequency lower than 100 MHz. As a
result, the estimations performed in this case study used this
operating frequency. Even so, in a real hearing aid application,
the frequency will much likely be lower than that. However, in
this early stage of the design space exploration, this estimation
is enough. It will save much time compared with a complete



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

5

10

15

20

Chip Area (mm2)

Po
w

er
C

on
su

m
pt

io
n

(m
W

)

LX7 Fusion F1 Hifi4
Hifi4+Multiplier Fusion G3 Fusion G6

1 Issue
Slot

2 Issue
Slots

4 Issue
Slots

Fig. 3: Comparison of the chip area, power consumption and
number of issue slots of the different Tensilica configurations

synthesis, and the estimation errors are assumed to be the
same on the different configurations. Because this is out of the
scope of a quick design space exploration, it is not done here.
However, this estimation already shows the relation between
the increasing chip area and the rising power consumption of
the different configurations. The configurations with higher
computational power and bigger load/store units, like the
Fusion G6, are much bigger than the simple configurations as
the LX7. The power consumption of the chips is important be-
cause the battery life of a hearing aid depends directly on this.
In addition to the already presented configurations from Sec-
tion III, another one is added, here called “Hifi4+Multiplier”.
In this configuration, an additional multiplier unit is added to
the base configuration of the LX7 before adding the Hifi4 co-
processor to look at the impact of this modification. It will
increase the area and power consumption but also add some
computational benefits, as shown later.

Figure 4 shows some example results of a design space
exploration in three different spiderweb diagrams, displaying
the metrics number of cycles, hardware utility, and the required
real-time frequency. On the axis of the spiderwebs, five
different hardware configurations are denoted. The individual
colored lines in every spiderweb diagram represent the perfor-
mance of a specific beamforming algorithm for each metric.
The number of cycles is the first metric presented in the most
left diagram. This metric depicts how many cycles a hardware
configuration needs to process an input sample with a certain
beamformer. The fewer cycles a hardware configuration needs
for processing a sample, the better is the performance of
this configuration. The second diagram shows the utilization
of the different hardware configurations. It is measured in
Instructions Per Cycle (IPC). To fairly compare the different
issue slot architectures, the results are given in percentage,
whereas utilization of a 50% means that a four issue slot
architecture, for example, schedules a mean of two instructions
per cycle. The optimum of this metric would be a utilization

TABLE II
PROFILING RESULTS OF THE BASIC LX7 CONFIGURATION

Beamformer No. of Cycles Hardware Utility Req. Freq.

fixed 536 38,5% 8,5 MHz
adaptive Gain 1582 37,5% 25,3 MHz
adaptive Filter 3822 38,5% 61,2 MHz

GSC 3315 38,5% 53,0 MHz
MVDR 1734 41,5% 17,0 MHz

of 100% because, in that case, the hardware configuration
is utilized completely in every cycle. Furthermore, the last
spiderweb diagram on the right-hand side of the figure shows
the required frequency of the configuration to perform one
process step of the beamformer in real-time. As sampling
frequency 16 kHz is assumed, a typical sampling frequency
for hearing aids. The lower the required real-time frequency
is, the less power the hardware configuration will need later.
Therefore, the optimum of this diagram is the lowest frequency
possible.

The results depicted in Fig. 4 are all normalized to a
processing step for one sample, even though some algorithms
like the MVDR beamformer are working frame-based. With
this simplification, the results are more comparable and the
impact of a higher utilization is also represented in the number
of cycles, for example. The profiling results of the basic
LX7 configuration are not included in the figure, as they
are displayed in Table II, using the same metrics. These
results are listed separately because the execution time of
the configurations would be out of the scope of the Fig. 4.
The LX7 needs about ten times more cycles than the F1 to
process one sample of the adaptive filter beamformer. With this
example, the framework shows that the increasing hardware
cost can also give a real benefit in computation time. Even
though the size of the F1 configuration is about 50% higher
than the LX7, the already gained mean speedup without any
optimizations is about one order of magnitude.

The adaptive gain beamformer is a good example to analyze
the impact of the before mentioned additional multiplier added
to the LX7 before adding the Hifi4 extension. The configura-
tion “Hifi4+Multiplier” needs fewer cycles for processing one
sample, maintaining the same utilization resulting in a lower
fundamental operating frequency. Conversely, for the other
beamforming algorithms, this effect is not visible. This shows
that an analysis of the target application for the hardware
configuration is crucial. A hardware modification might not
be beneficial for every algorithm or every configuration.

Another outcome of the exploration is the execution time of
the MVDR beamformer. Even though the beamformer is the
most advanced and quite computational complex algorithm, it
has a better performance than the other flexible beamformer
in nearly every metric. Given that there is no overhead for the
processor to get the samples of two hearing aids, this algo-
rithm seems to be more parallelizable than the others. Only
the GSC beamformer seems to be more utilizable for some
hardware configurations. For the G3 and G6, the utilization



optimum

0

100

200

300

400

Number of Cycles

Hifi4 + Multiplier

Hifi4

F1 G3

G6

optimum

0%

20%

40%

60%

80%

Hardware Utility

Hifi4 + Multiplier

Hifi4

F1 G3

G6

optimum

0

1.5

3

4.5

6 MHz

Required Real-Time Frequency

Hifi4 + Multiplier

Hifi4

F1 G3

G6

Fixed Beamformer
Adaptiv Filter Beamformer

Adaptive Gain Beamformer

GSC Beamformer
MVDR Beamformer

Fig. 4: Results of a case study, comparing the different metrics: number of cycles, the hardware utility and the required real-time
frequency using five different complex beamforming algorithms to process one sample on five different hardware configurations

of the hardware architecture is improved using the MVDR
beamformer, also resulting in a better performance.

This case study revealed some unexpected behaviors in the
interactions of the hardware configurations and the beam-
forming algorithms. These specific results have not been
expected before and demonstrate the need for a fundamental
design space exploration. It is also shown that the proposed
framework significantly improves and partly automated the
research.

VI. CONCLUSION

Due to the vast possibilities, a design space exploration for
digital hearing aids is a difficult task. To perform a fundamen-
tal research, five commonly used beamforming algorithms and
several Tensilica based hardware configurations are taken into
account. However, due to the vast configuration possibilities of
these combinations, an enormous design space is created. This
paper presents a design space exploration framework to speed
up the investigation of the established design space. The frame-
work is based on commercial tools like MATLAB and the
Xtensa Xplorer to make the exploration partly automated. For
example, this is done with an automated fixed-point analysis
and automated C code generation. Besides, the presented case
study points out the influence of varying hardware parameters
on essential metrics, such as energy consumption, chip area,
or execution times. This evaluation shows the benefits of the
proposed framework.

ACKNOWLEDGMENT

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC 2177/1 - Project ID 390895286.

REFERENCES

[1] World Health Organisation, “Deafness and hearing loss.” [Online].
Available: http://www.who.int/news-room/fact-sheets/detail/deafness-
and-hearing-loss

[2] J. M. Kates, Digital hearing aids. San Diego: Plural Pub, 2008.
[3] K. Adiloğlu, H. Kayser, R. M. Baumgärtel, S. Rennebeck, M. Dietz, and

V. Hohmann, “A binaural steering beamformer system for enhancing a
moving speech source,” Trends in hearing, vol. 19, 2015.

[4] G. W. Elko and A.-T. N. Pong, “A steerable and variable first-order
differential microphone array,” in 1997 IEEE International Conference
on Acoustics, Speech, and Signal Processing. IEEE Comput. Soc. Press,
21-24 April 1997, pp. 223–226.

[5] F.-L. Luo, J. Yang, C. Pavlovic, and A. Nehorai, “Adaptive null-forming
scheme in digital hearing aids,” IEEE Transactions on Signal Processing,
vol. 50, no. 7, pp. 1583–1590, 2002.

[6] S. S. Haykin, Adaptive filter theory, 3rd ed., ser. Prentice-Hall informa-
tion and system sciences series. Upper Saddle River, NJ: Prentice-Hall,
1996.

[7] O. L. Frost, “An algorithm for linearly constrained adaptive array
processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926–935, 1972.

[8] A. Lacroix, A. Venetsanopoulos, M. Brandstein, and D. Ward, “Mi-
crophone arrays: Signal processing techniques and applications,” in
Digital signal processing: Mathematical and computational methods,
software development and applications, ser. /Woodhead Publishing series
in electronic and optical materials], J. M. Blackledge, Ed. Oxford: WP
Woodhead Publ, 2013, pp. 19–37.

[9] L. Gerlach, G. Paya-Vaya, S. Liu, M. Weisbrich, H. Blume, D. Mar-
quardt, and S. Doclo, “Analyzing the trade-off between power consump-
tion and beamforming algorithm performance using a hearing aid asip,”
in 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, 17.07.2017
- 20.07.2017, pp. 88–96.

[10] N. Werner, G. Payá-Vayá, and H. Blume, “Case study: Using the xtensa
lx4 configurable processor for hearing aid applications,” ICT Open,
November 2013.

[11] Cadence Design Systems, Inc., “Xtensa lx7 processor,” 2016.
[12] ——, “Xtensa processor developer’s toolkit,” 2014.
[13] ——, “Tensilica hifi dsp family,” 2019.
[14] ——, “Tensilica fusion f1 dsp,” 2016.
[15] ——, “Tensilica fusion g dsp family,” 2017.
[16] The MathWorks, Inc., “Matlab and matlab coder 2019b,” Natick, Mas-

sachusetts, United States, 2019.


