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Abstract—Although artificial Spiking Neural Networks provide
numerous advantages versus the traditional non spiking ones,
their high complexity is limiting the use to server computers or
dedicated ASIC implementations. As an alternative, the recently
proposed Spike-by-Spike (SbS) Neural Networks provide reduced
complexity while adding noise-robustness. In this work we propose
an accelerator framework for inference and incremental learning
targeting resource-constrained devices. The proposed architecture
automatically distributes computational tasks to multiple acceler-
ator units. This is the first SbS neural network implementation for
embedded systems. Demonstration on a Xilinx Zynq-7020 achieves
99% of accuracy on MNIST dataset classification and a 5x latency
enhancement compared to a Core-i7 computer running equivalent
network topologies. To facilitate the research in this domain, the
entire SbS accelerator framework is available as an open-source
project.

Index Terms—Artificial intelligence, spiking neural networks,
hardware accelerator, embedded systems, FPGA

I. INTRODUCTION

Over the past decade, the exponential improvement in com-
puting performance and the availability of large amounts of data
are boosting the use of Artificial Intelligent (AI) in our daily
lives. AI is increasingly attracting the interest of industry and
academia; in particular, Artificial Neural Networks (ANNs), an
architecture inspired from the biological brain, is becoming the
most frequently used form of AI.

Historically, ANNs can be classified into three different gen-
erations [1]: The first one is represented by the classical McCul-
loch and Pitts neuron model; the second one is represented by
more complex continuos-output architectures as Multi-Layer
Perceptrons and Convolutional Neural Networks (CNN); while
the third generation is represented by Spiking Neural Networks
(SNNs). They differ fundamentally in the neural computation
and the neural coding strategy: while the first generation uses
discrete binary values as outputs, the second generation uses
continuous activation functions where learning can be easily
implemented. In contrast, the third generation, uses spikes as
means for information exchange between groups of neurons.
This strategy mimics how real neurons interact through short
pulses (the so called action potentials).

Although the AI landscape is currently dominated by Deep
Neural Networks (DNN) from the second generation, nowadays
the SNNs belonging to the third generation are receiving con-
siderable attention [1]–[4] due to their advantages in terms of

robustness and the potential to achieve a power efficiency close
to that of the human brain (see section II for more details).

Among the family of SNNs, the Spike-by-Spike (SbS) neural
network [3] is inspired by the natural computing of the mam-
malian brain, being a biologically plausible approach although
with less complexity than other SNNs. The SbS model dif-
fers fundamentally from conventional artificial neural networks
since (a) the building block of the network are inference popula-
tions (IP) which are an optimized generative representation with
non-negative values, (b) time progresses from one spike to the
next, preserving the property of stochastically firing neurons,
and (c) a network has only a small number of parameters,
which is an advantageous stochastic version of Non-Negative
Matrix Factorization (NNMF), which is noise-robust and easy
to handle. In regard to biological realism and computational ef-
fort to simulate neural networks, these properties place the SbS
network in between non-spiking NN and stochastically spiking
NN [5]. However, despite the favorable noise robustness and
reduced complexity, the computational effort imposed by SbS
is not suitable for applications in the current emerging technol-
ogy of the Internet of Things (IoT) and Edge Computing. To
enable SbS to perform in such an embedded context, dedicated
architectures for SbS acceleration must be deployed, which is
the main goal of this work.

In the literature we find plenty of hardware architectures
dedicated to the second generation of NN implemented in Field
Programmable Gate Array (FPGA) and Application Specific
Integrated Circuit (ASIC) designs [6], [7]. However the related
work on SNN is much reduced. Recently, some state of the art
survey on hardware architectures for SNN have been reported
[1], [4]. In particular, Nassim Abderrahmane et al. briefly
describe and compare some recent implementations of ASIC
and FPGA where only two are suitable for embedded systems.
As a typical example of the current state of the art, Furber
et al., presents SpiNNaker [2], aiming to simulate very large
SNNs in real-time. It is composed of 48 chips containing a
shared memory and 18 ARM cores with small local mem-
ory each processor. The main feature of SpiNNaker are the
support for several neuron models, synaptic plasticity rules,
incremental learning capabilities and efficient communication
system. This architecture is suitable for neuroscience research
but not for embedded applications. Further on, in a previous



research Rotermund et al., demonstrated the feasibility of a
neuromorphic SbS IP in a Xilinx Virtex 6 FPGA [8]. It provides
a massively parallel architecture, optimized for memory access
and suitable for ASIC implementations. However, this design is
considerably resource-demanding to be deployed as a full and
functional SbS network in the current embedded technology.

Beside the actual architectures, researches have also identi-
fied design methodologies as a critical problem for the efficient
development of SNN [1]. For example, Nassim Abderrahmane
et al., develop a behavioral level simulator for neuromorphic
hardware architectural exploration named NAXT, capable to
reduce the number of spikes while keeping the neuron’s model
resulting in lower power consumption. This work provides
a great exploration of SNN for different network topologies
and computation approaches on NAXT. However, incremental
learning or refinement is missing as features in NAXT and in
the embedded implementations summarized in the research.

To address the aforementioned problems, this paper presents
a scalable hardware-software framework for SbS NN models
targeting embedded systems applications. The proposed frame-
work deploys a fully customizable SbS model allowing arbi-
trary dimensions, topologies, and acceleration configuration,
ideal for rapid experimentation and research on devices with
limited resources, particularly in the field of IoT and Edge
computing.

On the software side, the architecture offers a comprehensive
modern machine learning Application Programming Interface
(API), being user-friendly, modular and extensible. On the
hardware side, the architecture exploits the available resources
of the target platform: from pure embedded software on a single
Central Processing Unit (CPU), scaling to a variable number of
hardware accelerators in a low-cost or a high-capacity FPGA.
This design provides a configurable solution able to match
different FPGA characteristics.

The approach is demonstrated using the MNIST dataset
classification task deployed in a Xilinx Zynq-7020 achieving
a 99% of accuracy, and a 5x latency enhancement compared
to a Core-i7 desktop computer running an equivalent network
topology in Matlab.

To promote the research on SbS, the entire framework is
made available to the public as an open-source project at
http://www.ids.uni-bremen.de/sbs-framework.html

II. SPIKE-BY-SPIKE NEURAL NETWORKS

As a generative model [3], the SbS model iteratively finds
an estimate of its input probability distribution p(s) (i.e. the
probability of input node s to stochastically send a spike) by
its latent variables via r(s) =

∑
i h(i)W (s|i). An inference

population sees only the spikes st (i.e. the index identifying the
input neuron s which generated that spike at time t) produced
by its input neurons, not the underlying input probability dis-
tribution p(s) itself. By counting the spikes arriving at a group
of SbS neurons, p(s) is estimated by p̂(s) = 1/T

∑
t δs,st after

T spikes have been observed in total. The goal is to generate
an internal representation r(s) from the string of incoming
spikes st such that the negative logarithm of the likelihood L =
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Figure 1. (a) Performance classification of SbS NN versus equivalent CNN,
and (b) Example of the first pattern in the MNIST test data set with different
amounts of noise.

C −
∑
µ

∑
s p̂µ(s)log (rµ(s)) is minimized. C is a constant

which is independent of the internal representation rµ(s) and µ
denotes one input pattern from an ensemble of input patterns.
Applying a multiplicative gradient descent method on L, an
algorithm for iteratively updating hµ(i) with every observed
input spike st could be derived

hnewµ (i) =
1

1 + ε

(
hµ(i) + ε

hµ(i)W (st|i)∑
j hµ(j)W (st|j)

)
(1)

where ε is a parameter that controls the strength of sparseness
of the distribution of latent variables hµ(i). Furthermore, L
can also be used to derive online and batch learning rules for
optimizing the weights W (s|i).

Fundamentally, SbS is a stochastic gradient descent dynam-
ics consistent with Non-Negative Matrix Factorization (NNMF)
having several advantages. The stochasticity of gradient descent
could in principle overcome local minima. Furthermore, it
favors sparse solutions with little fluctuations (which is the case
for overcomplete representations). Finally this specific mecha-
nism for inducing sparseness selects those sparse solutions that
are robust against noise in the inputs.

In SbS, the expected change at a given h-state (i.e. ∆hsti ∝〈
p(st|i)hi∑
j p(st|j)hj

− 1
〉
p(st)

for all i ∈ (1, ..., N) is exactly the

same we would have in a low pass version of NNMF (∆hi =∑
s
p(s)p(s|i)hi∑

j p(s|j)hj
−1). Then, for each given h-state h, the changes

of h induced by SbS consist of the expected vector ∆h plus
fluctuations ηi(st) with < ηi(st) > p(st) = 0 (i.e. ∆hsti =∑
s
p(s)p(s|i)hi∑

j p(s|j)hj
+ ηi(st)). Thus, SbS performs a random walk

with mean ∆h and some variance and we have a stochastic
process in h-space with the correct drift (∆h) and diffusion.
Such processes drift towards states where the drift vanishes
except for remaining fluctuations. Thus, it produces a Brownian
motion finally leading to a probability density for h-states
centered around the fixed point.

An example of the robustness of SbS is presented in Fig. 1. It
compares the classification performance of a SbS network and
a tensor flow network, with the same amount of neurons per
layer as well as the same layer structure. We trained on MNIST



Figure 2. System-level overview of the proposed hardware architecture.

training data without noise (see [5] for details). It shows the
correctness for the MNIST test data set with its 10000 patterns
in dependency of the noise level for positive additive uniformly
distributed noise. The blue curve shows the performance for the
tensor flow network, while the red curve shows the performance
for the SbS network with 1200 spikes per inference population.
Beginning with a noise level of 0.1, the respective performances
are different with a p - level of at least 10−6 (tested with the
Fisher exact test). Increasing the number of spikes per SbS
population to 6000 (performance values shown as black stars),
shows that more spike can improve the performance under noise
even more.

III. THE PROPOSED ARCHITECTURE

In this section, we present a hardware-software solution for
rapid prototyping and deployment of SbS NN with customiz-
able hardware acceleration in embedded systems. In principle,
the proposed architecture is a cross-platform software library
for SbS model simulation, capable of utilizing the available
hardware resources for numerical calculations on either linear
algebra, parallel neuromorphic, or mixed computation. The
proposed framework allows modular software customization
to employ dedicated Graphics Processing Unit (GPU), Intel’s
Math Kernel Library (MKL), or any available customized hard-
ware. In this work, we focus on a customizable FPGA platform.

A. Hardware

As a hardware and software design, this architecture is
composed simply by one CPU and several hardware accel-
erators (see Fig. 2). Each accelerator is connected through
an AXI lite interface for parameter configuration, and AXI
stream interfaces for data transfer via Direct Memory Access
(DMA) allowing data movement with high transfer rate. Upon
conclusion of computation, each hardware accelerator activates
an interrupt flag that is processed by the software handlers to
collect results and start new transfer.

a) The accelerator unit: As a hardware peripheral, an
accelerator performs the update dynamics of an IP and the
spike calculation (see Eq. (1)). The dynamic equations are
written in SystemC. Despite the cost of hardware utilization

and computation latency, for this prototype, the SbS model is
demonstrated using 32-bit floating point numbers. In the target
device (Xilinx Zynq-7020), this implementation requires 12
BRAM-18K, 8 DSP48E, 4, 171 Flip-Flops, and 4, 874 LUTs.
The configuration registers of each accelerator are mapped
on memory to read and write the parameters associated to
computation of the SbS dynamics: number of vectors (IPs
and weights), vector length, filter size, and epsilon. Similarly,
the memory mapping contains the hardware control register
flags: initialize, start, done, idle, ready and interrupt enable.
As a special case, it is also implemented a smaller accelerator
to merely compute spikes, since the input layer is the one
producing the highest amount of spikes and it does not require
update dynamic on the IP neuron values.

b) Data transfer: The CPU and the accelerators share an
external DRAM as the main memory. Based on the software ex-
ecution, the CPU writes the data on the memory as a sequenced
frame containing firstly a 32-bit random number (MT19937),
secondly the IP vector, and finally a series of weight vectors.
Then the CPU configures the parameters associated with the
particular SbS model on the hardware accelerators and then
triggers its DMA for data transfer. Any number of IP frames can
be allocated, written, and then transferred at once. The DMA
puts the accelerator results back into the main memory.

c) Scalability: The number of hardware accelerators is
imposed by the FPGA capacity. An entire SbS-network may be
processed either by one single accelerator in a time multiplexed
manner, or one single SbS-layers can be partitioned to be pro-
cessed by several hardware accelerators. Any arbitrary number
of accelerators can perform in pipeline.

B. Software

The software architecture is structured as a layered object-
oriented application framework. For cross-platform portability
this framework is written in C language. Conceptually this de-
sign is modular, reusable, and extensible. The overall structure
is depicted in Fig. 3.

a) Presentation layer: On the top software-layer, the ap-
plication framework offers a simplified API. This provides the
data types, methods, and constructors to build SbS models with
customized network depth, layer types, dimensions, learning
rules, statistics, and acceleration distribution or scheme.

b) Modular base classes: This layer encapsulates the
SbS model classes and their algorithms. Here are defined the
function virtual-tables for polymorphic SbS-layers: input, con-
volution, pooling, fully-connected, and output layer, as well as
the multivector class which is used as a tensor. This software-
layer also contains utility classes for statistics, data logging, and
communication.

c) Accelerator layer: This layer is the interface for the
hardware acceleration and peripherals. This prepares the input
data for calculation and captures the output results, this involves
hardware profiles and configurations.

d) Hardware abstraction layer: This is a platform-
dependent layer that provides an abstraction for the hardware



Figure 3. System-level overview of the proposed software architecture.

function calls, this encapsulates hardware initialization, in-
terruption handling, and memory management. This software
layer uses proprietary data types and functions from the board
support package (BSP) in case of an embedded system, or
would use the system calls in case of an embedded Linux
environment. This layer uses platform timers for software char-
acterization, statistics, and provides support for upper layers.

C. Software flexibility

The software API is implemented with factory and container
design patterns to allow the construction of SbS-layers and
group them into a sequential SbS-network in a hierarchical
design. It is possible to build any quantity of SbS-network
models, however only one can perform computation on the
hardware at a time. Each SbS-layer encapsulates IPs, weights,
and learning data. These data structures are dynamically created
by the framework at runtime and remain static during perfor-
mance.

D. Accelerator framework and latency model

The accelerator framework can predict an overall perfor-
mance latency based on the network model, hardware resources
and their distribution. We have constructed a latency model of
the accelerators using the timing characterization obtained from
the high level synthesis.

The SbS update dynamic equation implemented in the hard-
ware accelerators is given by:

Dupdate = L(16V +K(11V + 70) + 7) + 42 (2)

while the spike hardware accelerator latency is:

Dspk = L(15V + 9) + 2 (3)

The parameters are V , the IP vector length; L, the layer dimen-
sion given by columns × rows; and finally K, the kernel or
filter size. In this equation, each product represents a hardware-
loop. The constant coefficients of V represent the computa-
tion latency of each IP element, while the single coefficients

Figure 4. Overview of the implemented application.

combine the initialization and computation of the composed
hardware-loops.

As shown later in the experimental results, this formula
provides an adequate latency model for the purpose of design
exploration, however this model does not include the latency
for DMA data movement.

IV. EXPERIMENTAL RESULTS

While this hardware architecture is designed to be portable
across multiple embedded platforms, this architecture is
demonstrated on a Xilinx Zynq-7020, which is equipped with
a double ARM Cortex-A9 as a processing system (PS) and
programmable logic (PL) equivalent to Xilinx Artix-7.

To demonstrate the advantages of the proposed architecture
and methodology, we have implemented a six layered SbS
model for MNIST classification task. The SbS NN model is
shown in the Fig. 4.

For the sake of concreteness, the preliminary training has
been performed in Matlab and the resulting weights are ex-
ported into binary files and stored in a micro SD card to
be loaded into the embedded system. In a small bare metal
software application, the SbS model is constructed using the
API from the software framework and then deployed in a Xilinx
Zynq-7020 at 250Mhz on the PL.

In a first experiment we test the proper functionality and
latency of the application as a function of the number of
accelerator units and hardware topology. The software API
offers the possibility to assign the hardware accelerators over
the layers of the SbS model with a simple configuration. We
use the tab. I to assign different accelerator schemes defined
on the table rows. The table shows the number of accelerators
assigned to each layer; the fractional numbers indicate a shared
accelerator, and the same color indicates the same accelerator.

The tab. I exhibits the hardware-software latency behavior.
In the first row we observe that one accelerator is shared to
compute six SbS-layers in a time multiplexed manner, in this
case we have the longest latency caused by the span in the
software handlers. The second last row shows the latency when
having one accelerator assigned to each SbS-layer, this is not
the shortest latency due the software span on the H3 layer,



Table I
OVERVIEW OF THE DIFFERENT IMPLEMENTED HARDWARE TOPOLOGIES.

which is a heavy-load layer. On the last row, two accelerator
units are assigned to H3, this avoids the previous software span
giving a fully pipelined case. The pipeline is achieved when
the performance of the accelerator units is overlapped by the
operation of the software handlers. This is also achieved when
sharing accelerator units over smaller layers as we observe in
the scheme with five and six accelerators.

Next, we compared the latency time from the experimental
implementation with the predictions from the theoretical model
of the sec.III. The results show a good agreement with the
latency model. The measurements show a fair prediction with
a minimum error of 3.89% on the acceleration scheme with 5
accelerators which is the most resource-efficient configuration,
in this case we have a fully pipelined operation. As a maximum
error, we find 7.23%, which appears in the scheme that has
a single shared accelerator to compute all network layers. In
this case we have a time multiplexed operation. Since the
latency model does not include the data movement, in the fully
pipelined operation we observed a deviation caused mainly by
the DMA data transmission to the accelerator, whereas in the
time multiplexed operation, the deviation is caused mainly by
the data transmission and reception. The results show that the
models can be used for a fast design exploration of the optimal
topology.

For the final demonstration, the design is instantiated with
the maximum possible number of accelerator units according to
the FPGA capacity of the Zybo Z7-20 (Xilinx Zynq-7020) 86%
LUT utilization and power dissipation of 2.743 W. As a result
we have a platform with 8 accelerators, one accelerator assigned
for the input layer (to produce spikes) and seven accelerators
available to compute the update dynamics. This configuration
reveals the bottleneck in the software handlers which prevents
further reduction of latency.

With these measurements for the particular SbS model,
we find the most resource-efficient implementation with 5
accelerators, 65% LUT utilization and power dissipation of
2.424 W. This configuration achieves a 5x latency enhancement
compared to a Core-i7 computer running equivalent network
topology in Matlab. All the configurations produced accurate
computations, the accuracy of pattern prediction is exactly the

same as in the Matlab model, 99%.

V. CONCLUSIONS

This work presents a cross-platform accelerator framework
for fast prototyping and testing of fully functional SbS network
models in embedded systems. As a software-hardware solution,
this framework offers a comprehensive high level software
API that allows the construction of SbS network models with
custom dimensions and configurable hardware acceleration.
Further on, this accelerator framework allows to estimate a
latency based on the given configuration. The accuracy is
sufficient for high-level design exploration.

To show the advantages of the accelerator framework, it was
implemented as a test with MNIST classification demonstrating
a 5x latency enhancement compared to Matlab on a Core-i7
computer.

As future improvements, an optimization model is under
development to automatically predict the optimal accelerator
scheme. In addition, the software handler is identified as the
throughput bottleneck, hardware handlers and custom data
movers will be part of future work to overcome this limitation.

In this paper we have shown that with the proposed accel-
erator framework it is possible to effectively deploy NN of the
third generation in small embedded systems.
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