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Abstract—In this paper, an operand masking approach is
proposed to achieve lower energy consumption using approxi-
mate computing techniques in programmable high-performance
processors, in this case horizontal and vertical SIMD vector
processors for embedded computer vision applications. Contrary
to state-of-the-art dedicated approximate arithmetic circuits, this
mechanism enables programmable fine-grained accuracy control
and switching energy reduction at runtime. An evaluation for a
45 nm ASIC technology shows a total effective energy reduction
of up to 4.5% for a horizontal SIMD vector processor architec-
ture executing approximate SIFT image feature extraction for an
error-resilient egomotion estimation algorithm.

Index Terms—Approximate Computing, Processor Architec-
tures, Energy Efficiency, Feature Extraction, Error-Resilient
Applications

I. INTRODUCTION

For embedded automotive computer vision applications like
real-time motion tracking and scene reconstruction [1], high
image processing performance is required within a heav-
ily constrained energy budget. In most cases, programming
flexibility for software updates and algorithmic extensions is
demanded. This limits the use of fully dedicated hardware
accelerators and leads to processor-based systems with a
considerably higher energy consumption.

In the last decade, approximate computing hardware mecha-
nisms have emerged as a possible solution for energy-efficient
computations in error-resilient algorithms [2]. These mecha-
nisms are aimed at reducing computational accuracy in favor
of energy savings. For commonly-used adder and multiplier
circuits, numerous approximate hardware architectures have
been proposed and compared [3], most of them being pa-
rameterizable during the design phase to adapt accuracy and
energy consumption to the requirements of a specific appli-
cation. However, state-of-the-art approximate arithmetic hard-
ware does not offer the necessary runtime reconfigurability to
cope with changing accuracy requirements in programmable
processor architectures, which may occur due to later software
extensions, different accuracy requirements in sub-algorithms
running on the same processor datapath, or the execution of
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different separate programs. If necessary, precise operations
must be supported next to approximate computations without
the need of implementing separate precise and approximate
functional units, causing silicon area and power overhead.

In this paper, an approximate operand masking approach
is proposed and applied to high-performance horizontal and
vertical SIMD vector processors to reduce the power consump-
tion. By using conventional precise arithmetic circuits with
runtime-reconfigurable approximated operands, a fine-grained
accuracy selection at bit-level is achieved. The required energy
per arithmetic operation is lowered by decreasing the switching
activity in the circuit. The effect is comparable to a reduced
datapath width, however, the hardware implementation is not
application-dependent and the accuracy-energy design space
can be reconfigured deliberately by the programmer at runtime.
Moreover, application code modifications are not required,
apart from using special instructions to set the accuracy level,
which allows effortless integration into existing software.

The paper is structured as follows: Section II introduces a
reference application from related work, which will be used to
evaluate the proposed masking mechanism. In Section III, the
hardware implementation of the approximate vector processors
is presented. Evaluation results and the discussion are provided
in Section IV. Section V concludes the paper.

II. RELATED WORK: EGOMOTION ESTIMATION

One of the key problems in automotive computer vision
applications is image interpretation and scene understanding.
For this paper, egomotion estimation [1] is used as a reference
application from related work for evaluating the proposed
approximation technique. Egomotion estimation provides a
method to reconstruct the 3D scene and measure the movement
of a vehicle from a sequence of on-board stereo camera
images. This algorithm is based on matching images features,
as for example provided by the widely-known Scale-Invariant
Feature Transform (SIFT) algorithm [4], by using a circular
matching approach to trace image features. The basic idea
of egomotion estimation is to match features across left and
right stereo images to obtain a 3D position in the surrounding
environment by using the horizontal disparity. The features are
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Fig. 1. Simplified block diagram of the vertical SIMD vector unit [5]. The
position of the operand masking mechanism is highlighted.

also tracked over time by matching the positions in subsequent
stereo image frames to obtain 3D movement of distinct feature
points in the surrounding scene. By assuming that the feature
points belong to static objects, the proper motion or egomotion
of a moving vehicle relative to its environment is obtained only
by evaluating on-board camera images. A detailed description
of the geometric transformation from 2D feature points to 3D
camera motion is out of scope of this paper and is addressed
in [1]. The image feature extraction process involved in this
algorithm is computational intensive and requires a high-
performance, yet low-power processing platform to cope with
real-time and energy constraints in vehicles.

III. IMPLEMENTATION OF HIGH-PERFORMANCE
APPROXIMATE VECTOR PROCESSORS

In the following, the datapaths of two vector processor
architectures used to evaluate the proposed approximate mask-
ing mechanism are presented. The architectures employ either
vertical or horizontal SIMD data-level parallelism and are
designed as accelerating coprocessors for computational inten-
sive image processing tasks. A 32-bit scalar main CPU, in this
case a two-issue Very Long Instruction Word MIPS (VLIW-
MIPS) architecture, is in charge of controlling the application
flow and to issue vector instructions to the coprocessor.
A detailed system description as well as performance and
efficiency profiling have been published in previous work [5].

A. Vertical and Horizontal Datapath Architectures

Fig. 1 shows the simplified block diagram of the vertical
SIMD vector unit. Vertical vectorization refers to the tradi-
tional vector processing approach of sequentially applying the
same operation, coded in a single instruction, on multiple
data elements by using a single ALU per datapath over
multiple clock cycles. The datapath itself is called vector
lane, which contains a vector ALU composed out of multiple
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Fig. 2. Simplified block diagram of the horizontal SIMD vector datapath [5].
The position of the operand masking mechanism is highlighted.

independently pipelined functional units (FU, 1 to 5 pipeline
stages), a register file (RF) for results and operands, as well
as a memory controller to interface the local memory and
processor scratchpad resources in the vector unit. One vector
unit contains two vector lanes. The ALU result of one vector
lane may be directly forwarded to the second one by using a
chaining mechanism, which allows parallel execution of data-
dependent vector instructions to increase the vector instruction
throughput. To achieve maximum performance, the local mem-
ory, scratchpad and RF SRAM blocks are implemented as two
separate memories with interleaved and overlapping even/odd
address accesses. By this, the pipelined vector lane architecture
is able to operate at 1667 MHz for a 45 nm ASIC technology
without being constrained by slower SRAM blocks, which are
used at a relaxed half-clock timing constraint of 833 MHz [5].
The proposed operand masking mechanism is implemented
for the adder and multiply-accumulate (MAC) FUs to enable
approximate additions, subtractions and multiplications, and
is placed prior to the first ALU pipeline register stage to not
adversely affect the timing. Control registers and instructions
are used to control the mechanism at runtime.

In Fig. 2, the simplified block diagram of the horizontal
SIMD datapath is depicted. Horizontal vectorization uses mul-
tiple ALUs in the datapath to process multiple data elements
per clock cycle. All ALUs, the global vector RF, local memory
and processor scratchpad resources are combined in a hier-
archically flat architecture. The ALU supports a single-cycle
MAC operation, requiring an additional accumulator operand
from the register file. Instead of utilizing a less efficient
multi-port monolithic RF, a two-bank partitioned vector RF
is used [6], which is used like an ordinary two-read one-write
port RF for most instructions as well as a four-read two-write
port RF with bank access restrictions for the MAC operation.
The horizontal SIMD datapath computes parallel results in
one clock cycle. Due to the datapath simplicity, minimal
two-stage pipelining with overlapping instruction decoding
and operation execution is sufficient to achieve the VLIW-
MIPS CPU clock frequency of 510 MHz for a 45 nm ASIC
technology without specific timing optimizations [5]. Since
the VLIW-MIPS can only issue a single vector instruction
per cycle, maximum instruction throughput and computational
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performance of the coprocessor is ensured. Therefore, the
proposed masking mechanism can be combinationally placed
at the adder and MAC FU inputs without timing implications.

For both vertical and horizontal SIMD architectures, the
SIFT image feature extraction algorithm has been imple-
mented for evaluating the proposed approximate vector pro-
cessors. The algorithmic theory of SIFT is out of scope of
this paper and is addressed in detail in [4]. Implementation
details and an extensive application profiling for the given
vector architectures have been published in [5].

B. Bitmasking-Based Approximate Mechanism

To enable fine-grained runtime-reconfigurable approxima-
tion, the operand masking technique illustrated in Fig. 3 is
proposed. The 32-bit input operands for adder and MAC
FUs of the ALU are modified by an inserted stage of AND
gates, which is controlled by a mask register at bit level.
If some LSBs of the control register are set to zero, the
operand LSBs presented to the FUs will also be masked
to zero, which reduces the switching activity and thus the
power consumption in the following ALU circuit at the
expense of reduced computational accuracy. For the SIFT
implementation, 4 computational intensive algorithmic parts
which may utilize approximation are identified, i.e., scale-
space pyramids construction (Gaussian and DoG), keypoint
orientation assignment, descriptor histogram binning, and de-
scriptor normalization. For each of these 4 parts, the masking
control registers are set to defined parameters at runtime. Since
there is independent masking of adder and MAC operands
by using two control registers, the approximation behavior is
described by a total of 8 mask parameters.

IV. EVALUATION RESULTS

In this section, the environment and metrics of evaluating
the effectiveness of the operand masking technique will be
presented first. Afterwards, the approximate vector processors
will be evaluated in terms of masking circuit implementation
and area overhead, approximate egomotion estimation accu-
racy as well as the overall energy reduction due to masking.

A. Evaluation Environment and Metrics

For evaluation, a vertical SIMD vector processor config-
uration with 8 vector units and a horizontal SIMD vector
processor with 8 parallel 32-bit ALUs (256 bit vector width)
are selected. The SIFT algorithm executed on these processors
utilizes a 13.19 fixed-point format for all calculations, so the
proposed operand masking reduces the effective number of
fractional bits. For computational accuracy evaluation, both

processors are emulated on the Xilinx ML605 (Virtex-6)
FPGA evaluation platform [7] at 20 MHz. The emulated ap-
proximate processors running SIFT are embedded into the ego-
motion estimation application flow by receiving image frames
from a connected host PC and passing back the extracted
image features and descriptor vectors. The circular matching
of keypoints, the motion estimation itself and generation of
error metrics are implemented on the host PC. As an image
sequence, the automotive scene 2011 09 26 drive 0005 (160
stereo image frames) from the KITTI dataset [8] is selected.
The processors are implemented as ASIC netlists using a
synthesis flow for a 45 nm standard cell technology. Switch-
ing activity simulations are performed for selected operand
masking parameter sets. Due to the long runtime of these
simulations, only a single image frame is processed to estimate
the overall energy reduction.

To evaluate the quality of approximate egomotion es-
timation, the mean relative error of translation velocity
(MREtrans) and the mean absolute error of camera pose
change (MAEpose) metrics are introduced:

MAEpose =
1

N

N∑
i=1

|~rref(i)− ~r(i)| (1)

MREtrans =
1

N

N∑
i=1

|~vref(i)− ~v(i)|
|~vref(i)|

(2)

N is the total number of frames of the evaluated video se-
quence, and ~r and ~v are the camera pose change in rad/Frame
and the vehicle translation velocity in m s−1 for each sequence
frame i, respectively. The golden reference values ~rref and
~vref are calculated from GPS data provided with the KITTI
dataset. These metrics do not compare trajectory endpoints
of the estimated motion, but averaged errors per frame. The
reason is that endpoint errors are dependent on the frame
where an error occurred, which may distort the error results.

B. Evaluation of ASIC Implementation
Fig. 4 shows the circuit area overhead of both evaluated

approximate processors. Due to the additional operand mask-
ing mechanism, the total cell area is increased by 2% and
0.5% compared to the accurate reference implementation [5]
for the vertical and horizontal SIMD processor, respectively.
The AND gates, which are located in the ALU fraction, have no
significant influence on the total area. However, the required
mask control registers and the integration of control logic
to configure these registers increases the necessary hardware
amount and is accounted to the Other fraction.

Timing results after synthesis show an unchanged maxi-
mum clock frequency of 1667 MHz for the vertical SIMD
vector unit. This is because the placement of the masking
mechanism prior to the first ALU pipeline stage does not
affect the critical path, which is located within unmodified
intermediate pipeline stages of the MAC FU. The horizontal
SIMD processor implementation, on the other hand, provides
enough timing slack to accommodate to the maximum VLIW-
MIPS CPU frequency of 510 MHz even with the additional
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masking mechanism in the combinational path through the
ALU. Therefore, the proposed operand masking mechanism
does not decrease the computational performance compared
to the accurate reference architectures [5].

C. Evaluation of Egomotion Estimation Accuracy

To evaluate the trade-off behavior between the operand
masking approximation errors and the overall energy reduc-
tion, an iterative linear search algorithm for the 8 SIFT mask
parameters is employed. Starting from the accurate mask
setting (no LSBs masked) in the first iteration, 8 test masks
are generated, where each of the parameters is independently
increased by one LSB. The egomotion estimation application
is run and the number of average circular keypoint matches
is obtained for each test mask, resulting in 8 application
runs. Due to the FPGA emulation latency of up to 20 s for
processing one SIFT image frame on the emulated processors,
only the first 4 frames of the KITTI sequence are considered
per run. From these 8 runs, the mask parameter setting with the
highest average number of circular matches is selected and the
iteration index is increased. This procedure is repeated until
no more matches are found due to excessive approximation
and egomotion estimation fails.

In a finalization step, egomotion estimation is executed on
the complete KITTI sequence for each selected mask param-
eter from the linear search. The error metrics MREtrans and
MAEpose are computed as errors to reference GPS tracking
data provided with the KITTI dataset. Fig. 5 shows the error
metrics as a function of the linear search iteration index.
Iteration 1 corresponds to accurate computation with values of
4.4% and 0.80× 10−3 rad/Frame for MREtrans and MAEpose,
respectively. It is shown that MREtrans and MAEpose are
kept below 5.3% and 1.00× 10−3 rad/Frame, respectively, for
a large range of 101 iterations for the vertical and 85 it-
erations for the horizontal SIMD vector processor. At this
point, at least 4 out of 8 mask parameters have reached 16
masked LSBs of the 32-bit operands. Beyond this point, the
amount and quality of matched SIFT feature points quickly
drops within 5 iterations, causing the maximum error values
to be reached. It can be concluded that the addition and
multiplication operations are robust to approximations. Stable
keypoints are generated with a reduced operand accuracy of

up to 16 LSBs in some application parts in the later linear
search iterations, which implies that the fixed-point operands
could be resized to only 16 bits in these parts to save memory
space and achieve higher performance by SIMD. However,
this is specific behavior of the particular SIFT implementation
and requires manual code revision and internal number format
conversions, which is out of scope of this paper. The focus
of this paper is a mechanism which allows energy reduction
of processor implementations without major modifications to
existing architectures and application code.

It is observed that even though the amount and descrip-
tor vectors of detected SIFT keypoints vary with increased
approximation, the variations are consistent between stereo
images and following frames, so circular matching in the
egomotion estimation application is still operational. However,
after a certain approximation level, the consistency is imme-
diately lost and egomotion estimation fails to match keypoints
and generate useful results. This gives rise to adjust the
approximation level within a wide range to reduce switching
and required energy in the processors, because the accuracy in
terms of MREtrans and MAEpose is not significantly changed.
Some linear search iterations with locally minimal error val-
ues highlighted in Fig. 5 are selected for switching activity
simulation and the following energy reduction evaluation.

D. Evaluation of Energy Reduction

Fig. 6 shows the processor energy consumption determined
via switching activity simulation for extracting SIFT features.
The parameters for approximate operand masking have been
selected from the given linear search iterations. For both ver-
tical and horizontal SIMD processor, the leftmost bar denotes
the reference energy consumption from [5], where no operand
masking mechanism has been implemented. For the reference,
the largest fractions of 49.7% and 73.4% of the total energy
consumption are accounted to local and scratchpad memory
blocks of vertical and horizontal SIMD processor, respectively.
The absolute memory energy consumption is higher on the
horizontal SIMD processor, even though the absolute memory
cell area is higher on the vertical one (refer to Fig. 4). This is
related to the clocking scheme. The interleaved memories on
the vertical SIMD processor operate at half the clock freqency
of the vector pipeline using a clock divider, which is activated
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only at memory accesses. On the horizontal SIMD processor,
the memory clocking is simpler and directly uses the CPU
clock, resulting in continuous clock transitions at the memory
interface which increase clock-dependent energy consumption.
Clock gating techniques for energy reduction are not used
because of performance being the main optimization goal and
in favor of a simpler architecture design.

With the implementation of the operand masking mecha-
nism, the energy consumption of the vertical and horizon-
tal SIMD processors is increased to 100.2% and 100.6%
compared to [5], respectively, when using no approximation
(linear search iteration 1). This is due to the additional mask
control register logic contained in the Other energy fraction.
By increasing the level of operand masking and thus reducing
switching activity, the overall energy consumption is reduced
down to 99% and 95.5% of the reference implementation for
vertical and horizontal SIMD processor, respectively, saving
up to 4.5% of energy. Therefore, operand masking proves to
be a considerable technique for saving energy on application-

specific, yet fully programmable approximate processors for
error-resilient applications. In this particular application sce-
nario, the saved energy even comes without quality impli-
cations, since the overall egomotion estimation error metrics
MREtrans and MAEpose are not significantly increased.

However, the energy reduction effect of the proposed
operand masking mechanism is limited to combinational ALU
standard cells only, which is why it is more effective on the
horizontal SIMD processor. To illustrate this, Fig. 7 depicts the
switching-related dynamic power distribution per standard cell
type for the reference [5] and for the linear search iterations
with the highest energy reduction from Fig. 6. For both vertical
and horizontal SIMD processors, memory blocks contribute
most to the dynamic power. Apart from that, the dynamic
power for the vertical SIMD processor is dominated by clock-
ing sequential cells, which is mostly caused by the 5 pipeline
stages of the MAC unit. Combinational logic only accounts
for 3.3% of the dynamic power and is reduced to 2.5% with
operand masking, while the other power components remain
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nearly unchanged. For the horizontal SIMD processor with
only minimal pipelining, on the other hand, combinational
logic contributes to a larger extent of 12.1% to the total dy-
namic power, which is reduced to 6.4% with operand masking.
This explains the results from Fig. 6: For the vertical SIMD
processor, the energy consumption of the ALUs is only re-
duced from 24.7% to 23.0%, because it mainly consists of the
energy required for clocking the pipeline register stages. For
the horizontal SIMD processor, the ALU energy consumption
is nearly halved from 9.6% to 5.4% for the horizontal SIMD
processor, because it is mainly combinational. It becomes clear
that the designer of deeply pipelined approximate processors
may need to combine the proposed operand masking technique
with other mechanisms like clock gating to also reduce clock-
related switching activity in the dominating sequential parts
of the circuit. This, however, can lead to design complications
during ASIC synthesis and may cause severe performance
implications, whereas the implementation cost of the proposed
masking mechanism is negligible.

V. CONCLUSION

In this paper, an operand masking approach is proposed to
achieve lower energy consumption by approximate comput-
ing techniques in programmable high-performance processors
for computer vision applications, in this case vertical and
horizontal SIMD vector processors. Contrary to dedicated
approximate circuits, the mechanism enables the programmer
to deliberately reconfigure operand accuracy at runtime in
order to reduce the ALU switching activity and, consequently,
the energy consumption. The effectiveness is evaluated with
an error-resilient egomotion estimation application, which ex-
ecutes feature matching on approximate SIFT features gener-
ated by the aforementioned approximate processors. For the
horizontal SIMD processor, total system energy savings of up
to 4.5% for a 45 nm ASIC technology are achieved without a
significant decrease in quality of the application result.

To obtain masking parameter sets for the mechanism, a
linear search algorithm is used to find locally optimal trade-off
points in the accuracy-energy design space for the application.

However, due to missing global feedback, pareto-optimal
parameters may not be found. To improve the parameter selec-
tion without infeasible brute-force approaches, global search
heuristics like simulated annealing or genetic algorithms can
be used to overcome the limitations of the linear search.

Evaluation of the dynamic power distribution in an ASIC
implementation shows that the proposed technique is only
effective in reducing the switching power of combinational
ALU cells. Therefore, operand masking has a larger positive
effect in the simple, combinational horizontal SIMD ALUs.
The vertical SIMD datapath, however, is deeply pipelined and
operand masking can reduce the energy consumption by only
1%, because 96.7% of the dynamic power are consumed by
clocked pipeline registers and memory blocks. To further de-
crease the power, the proposed mechanism has to be combined
with other methods, e.g., clock gating, to reduce switching in
sequential cells. However, this may complicate meeting the
design constraints for high-performance processors, whereas
combinational operand masking is easily integrated.
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[6] G. Payá-Vayá, J. Martı́n-Langerwerf, and P. Pirsch, “A multi-shared
register file structure for vliw processors,” Journal of Signal Processing
Systems, vol. 58, no. 2, pp. 215–231, 2010.

[7] ML605 Hardware User Guide, Xilinx, version 1.8, 02.10.2012.
[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:

The KITTI dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237,
2013.


