
Complexity Reduction for Sphere Decoding using
Unum-Type-II-Based SORN-Arithmetic

Simon Knobbe, Moritz Bärthel∗, Steffen Paul∗ and Jochen Rust∗
∗Institute of Electrodynamics and Microelectronics (ITEM.me)

University of Bremen, Bremen, Germany, +49(0)421/218-62553
Email: sknobbe@uni-bremen.de, {baerthel, steffen.paul, rust}@me.uni-bremen.de

Abstract—In this paper the complexity of a Sphere Decoding
algorithm is reduced by using a Unum type-II-based SORN
preprocessor, which excludes a number of possible solutions
in advance. Two different methods for permuting the reduced
symbol tree are discussed and evaluated for different SORN
datatypes, sorting algorithms and MIMO system sizes. It is
shown that the processing time of the Sphere Decoding algo-
rithm by means of the visited nodes depending on the SNR can
be reduced by 17% to 52%.

Index Terms—Digital Signal Processing, MIMO, Sphere De-
coding, Unum, SORN

I. INTRODUCTION AND RELATED WORK

In communication technologies, MIMO systems (Multi-
ple Input Multiple Output) with multiple antennas at the
transmitter and receiver stations are often used [1] in order
to increase channel capacity and expand the data rate [2].
During the data transmission the signals of the different
antennas are superimposed and then have to be separated
again at the receiver station. For this detection, different
methods like Zero-Forcing [3] or Sphere Decoding (SD) [4]
can be exploited.
Beside the classical digital number formats fixed-point and
IEEE floating-point, the Universal Number (Unum) format
offers new possibilities for implementing those algorithms.
While the initial Unum format (type-I) was developed as
an extension to classical floating-point to handle numerical
instabilities and provide runtime variable datawidths [5],
further developments led to type-II Unums. This approach
is based on low complexity and fast computing resulting
in Sets-Of-Real-Numbers (SORNs) which use open intervals
and exact values and provide a coarse quantization of the
reals [6]. This number format can be utilized in order to
reduce the amount of possible solutions for an optimization
problem as exemplary shown in [6]. In [7] the number
of possible symbol combinations in order to determine the
maximum likelihood solution (ML) for a MIMO transmission
problem is reduced by using a Unum type-II-based SORN
preprocessor.
In this paper we apply SORN based signal processing for
non-linear SD-based signal detection in MIMO wireless
communication systems. In detail, we reduce the search tree
of the Sphere Decoder using the SORN preprocessor and then
permute it with two different approaches in order to reach a
lower overall computing time.
Our paper is organized as follows: In sec. II, the basics
of Sphere Decoding and the SORN preprocessing are in-

e(l) < r e(l) > r

l = 0

l = 1

l = 2

Fig. 1. Idea of Sphere Decoding: The decoder observes only the white
nodes with an error smaller than r.

troduced. Sec. III explains how to change the tree structure
of the Sphere Decoder by permuting the symbol vectors. In
Sec. IV, our approaches are evaluated on a simulation basis.
Finally, the paper is concluded in sec. V.

II. REDUCTION OF THE SOLUTION SET

A. MIMO-Transmission Setup

For a discrete modulation alphabet (e.g. m-PSK, QAM)
the set of possible combinations for transmitting signals X
at the transmitter side is finite. As transmitting signal, the
symbol vector x ∈ CNt is assumed with Nt as number of
transmitting antennas. Assuming an Additive White Gaussian
Noise-channel (AWGN) with a channel matrix H ∈ CNr×Nt

the received signal vector can be described by

y = Hx+ n (1)

with y ∈ CNr and Nr as number of receiving antennas. In
this paper the same number of antennas N = Nt = Nr on
the transmitter and receiver side are assumed. For symbol
detection the channel matrix H is assumed to be known at
the receiver side. Hence the receiver has to detect the best
symbol combination

x̂ = arg min
x∈X

||y −Hx||22 (2)

either via exhaustive search or using linear or non-linear
solvers like Zero-Forcing or Sphere Decoding.

B. Sphere Decoding

The main idea of Sphere Decoding is to detect all solu-
tions in a given radius r. By exploiting an ordinary QR-
decomposition [8], equation (2) can be written as

x̂ = arg min
x∈X

||QHy︸ ︷︷ ︸
=:ŷ

−Rx||22 (3)

with a unitary matrix Q ∈ CN×N and an upper triangular
matrix R ∈ CN×N . This allows to compute the error element

TABLE I
9 BIT SORN

decimal: −∞ (−∞,−1) −1 (−1, 0) 0 (0, 1) 1 (1,∞) ∞

SORN: 100000000 010000000 001000000 000100000 000010000 000001000 000000100 000000010 000000001

wise by starting with the last element of x. Each possible
symbol yields to a finite number of new branches with error
nodes as shown in figure 1. Based on equation (3) the error
at a node at tree level l can be computed recursively by

e(l) =
∣∣∣ N∑
i=N−l+1

(RN−l+1,i xi)− ŷN−l+1

∣∣∣2 + e(l − 1) (4)

with e(l − 1) as error of the previous level and e(0) = 0.
According to the Schnorr-Euchner algorithm [9], at each node
the branch with the lowest error will be taken first. For each
branch the error increases at each node, such that branches
with a higher error than the search radius r can be neglected.
After reaching the lowest level of the tree the search radius
can be adapted as described in [4].

C. SORN Preprocessing

The Sets-Of-Real-Numbers (SORN) datatype is derived
from the Unum type-II representation which displays the real
numbers with exact values and open intervals in between.
Two possible SORN configurations taken from the original
work1 [6] are composed of the values

L9 ={0, 1, ∞}
L17 ={0, 0.5, 1, 2, ∞} ,

(5)

the corresponding negative values and the open intervals in
between. Tab. I shows the mapping of the SORN datatype for
the first configuration, the second one is built in a similar way.
For SORN arithmetic at first inputs are converted into the
respective SORN datatype. The arithmetic operations are then
executed using pre-computed look-up tables (LUTs). These
LUTs can be efficiently implemented in hardware using sim-
ple Boolean Logic. Applied to the ML-Estimation problem
from equation. (2), the SORN-error E(xi) = ||y −Hxi||22
is computed for every possible symbol vector xi from the
set X via exhaustive search. Depending on the result E(xi),
a certain amount of symbol vectors xi can be considered as
possible solutions for equation (2). They build the reduced
solution set Xs which is the result of the preprocessing and
is passed to the Sphere Decoder.
Since the SORN preprocessing is not the main focus of this
work, a more detailed description of SORN arithmetic, the
structure of the LUTs and the application to the MLE can be
found in [7].
Analog to the implementation in [7], figure 2 shows the
mean number of remaining symbol vectors after SORN
preprocessing for 4×4 and 8×8 MIMO-Systems with 20000
simulations. Using the Unum type-II based 17-bit-SORNs
the reduction is much higher than using the 9-bit-SORNs.

1The only difference are the endpoints ∞ and −∞ which are separated
here while the original work uses a combined value ±∞.

−6 −4 −2 0 2 4 6
30

40

50

60

70

80

90

100

SNR [dB]

M
R

SV
[%

]

4× 4, 9 Bit 4× 4, 17 Bit
8× 8, 9 Bit 8× 8, 17 Bit

Fig. 2. Mean remaining symbol vectors (MRSV) in % of 20000 simulations
for a 4× 4 and a 8× 8 MIMO-System.

Similarly, the 4×4 MIMO-system leads to a higher reduction
than the 8×8 system. In the best case reduction rates of about
40% are reached, a 8 × 8 system with 9-bit-SORNs on the
other hand leads to an insignificant reduction.

III. PERMUTATION OF THE SOLUTION SET

Excluding solutions with the SORN preprocessor has the
effect of cutting off branches from the search tree. This leads
to different subtrees with smaller branches including less
solutions at the lowest level and greater branches including
many solutions. Smaller branches have lower information
contents but faster computing times than greater branches.
The reduced solution set Xs can be reordered to concentrate
or to offset this effect. Practically, the reordering has the
meaning of interpreting the signals of the different antennas
in a new order. In this paper we will discuss two possibilities
of permuting the solution set Xs: One with a balanced ratio
of subtree sizes and one with an unbalanced ratio. In figure
3 an example of a 3-dimensional BPSK-system is shown.
The original solution set in figure 3(a) was reduced from 8
to 6 symbol vectors. Both subtrees from the point of view
of the first level results into possible solutions, the ratio of
the subtrees is balanced. By exchanging the first and third
line in all symbol vectors, the solution set changes as shown
in figure 3(b). The right subtree includes four solutions, the
left one two solutions, which is an unbalanced ratio. Also

1 1 1 -1 -1 -1
1 1 -1 1 1 -1
1 -1 -1 1 -1 -1

(a) Balanced Sorting

1 1 -1 -1 -1 -1
1 1 1 1 -1 -1
1 -1 1 -1 1 -1

(b) Unbalanced Sorting

Fig. 3. 3-Dimensional BPSK with different permutations: The black circles
represent excluded nodes. In this example for the Balanced Sorting (a) 2
nodes are deleted. The Unbalanced Sorting (b) leads to 3 deleted nodes.

the number of nodes changed: Without the root node the
tree from figure 3(a) includes 12 nodes, the tree from figure
3(b) decreases to 11 nodes. The effects of the two different
permutation methods on Sphere Decoding will be discussed
in section IV.

A. Computing the permutation

In the following steps an algorithm to find a permutation
is explained. The main idea of the sorting algorithm is to
count the number of solutions included in each branch at each
tree level and to find a suitable balanced or an unbalanced
sorting. The algorithm presented in code 1 determines the
permutation order.
For description the symbol vectors sl(k) ∈ Cl for k =
1, ...,ml are introduced. The symbol vector sl describes
all possible combinations of the given modulation for a l-
Dimensional set. As an example for a QPSK (m = 4) with
l = 2:

s2(1) =
1√
2

(
1 + j
1 + j

)
, ..., s2(16) =

1√
2

(
−1− j
−1− j

)
(6)

The counter clik specifies the occurrence of the l-dimensional
symbol vector sl(k) in the N -dimensional solution set Xs

with regard to a certain line i. To provide a measure for the
size of the subtrees the standard deviation is used:

σli := std(cli) :=

√√√√ 1

ml

ml∑
k=1

(clik − µcli)2 (7)

Therefore µcli is the average value and m the modulation
size, which leads overall to ml symbols at level l. The
approach of the algorithm in code 1 is to start with the highest
level and find the line from Xs, that minimizes or maximizes
the standard deviation for a balanced or unbalanced tree
sorting. With regards to the hardware complexity of the
sorting algorithm the square root and the division with mi

are not relevant for the comparison. Also the mean value is
identical for all lines, because

∑ml

k=1 clik is constant for all
lines i.

ml∑
k=1

(clik − µcli)2 =

ml∑
k=1

c2lik︸ ︷︷ ︸
relevant part

− 2µcli

ml∑
k=1

clik +

ml∑
k=1

µ2
cli︸ ︷︷ ︸

constant part

(8)

An equivalent comparison is to compute the squared sum of
the occurrence Tli :=

∑ml

k=1 c
2
lik. At the following levels

a similar approach is taken, but the number of symbols
increases to ml combinations. The parameter Tdi determines
the measure for the subtree ratio depending on the previous
lines.
Note that the symbols of x in equation (4) are detected upside
down, such that the permutation order is turned. Permuting
the lines of x also leads to permuting the lines of ŷ and the
columns of H . Consequently the matrices Q and R of the
QR-decomposition are changed.
In Tab. II the values for the standard deviation and the
squared sum for the examples from figure 3 are presented.

TABLE II
STANDARD DEVIATION OF FIGURE 3

Tree Level l σli Tli cli1 cli2 cli3 cli4

(a) balanced 1 0 18 3 3 - -
2 0.5 10 2 1 2 1

(b) unbalanced 1 1 20 2 4 - -
2 0.87 12 2 0 2 2

It can be seen that an unbalanced sorting leads to greater
values of squared sum and standard deviation than a balanced
sorting.

B. Approximation of the permutation

The problem of the sorting algorithm in code 1 is that
the complexity increases exponentially with the tree level.
As an example for an 8-Dimensional QPSK 47 = 16384
possible symbol-vectors have to be counted. Especially at
the lower levels the optimal sorting might not be required.
To avoid the complexity increase in code 2 an alternative
sorting algorithm is presented. The sorting of this algorithm
based only on the knowledge of the occurrence of the 1-
dimensional symbols s1(k). By using the multidimensional
Taylor series first order [10], it can be shown that the squared
sum can be approximated as follows:

Tli =

ml∑
k=1

c2lik ≈
1

ml−1

m∑
k=1

c21ik =
T1i
ml−1 (9)

Using this approximation the permutation can be determined
by sorting the squared sum of the first level. To compare

Code 1 Sort Tree Exact Version
Input: Xs, sl . matrix with all remaining symbol vectors,

vector of symbol combinations
Output: p ∈ NN . permutation order

1: for l = 1, ..., N − 1 do . Determine permutation
elements

2: Set C ∈ N(N−l+1)×ml

as
3: clik :=

∑
κ

(
Xs{pN , ...pN−l+2︸ ︷︷ ︸

not existent for l=1

,i}κ = sl(k)
)

. count symbol vectors sl(κ)
4: for i = 1, ..., N do
5: Set T l ∈ NN with Tli :=

∑m
k=1 c

2
lik

. Compute squared sum (eq. (8))
6: end for
7: pN−l+1 = argmaxi(Tli) . use max for unbalanced

and min for balanced branches
8: end for

Code 2 Sort Tree Approximative Version
Input: Xs, sl . matrix with all remaining symbol vectors,

vector of symbol combinations
Output: p ∈ NN . permutation order

1: Set C ∈ NN×m as cik :=
∑
κ

(
Xsκ(i) = s1(k)

)
2: Set T ∈ NN with Ti :=

∑m
j=1 c

2
ij

3: p = arg sorti(Ti) . use ascend for balanced and
descend sorting for unbalanced branches

−6 −4 −2 0 2 4 6
20

30

40

50

60

70

80
m

ea
n

vi
si

te
d

no
de

s
4× 4 balanced

−6 −4 −2 0 2 4 6
20

30

40

50

60

70

80
4× 4 unbalanced

−6 −4 −2 0 2 4 6
0

200

400

600

800

1,000

1,200

1,400

SNR [dB]

m
ea

n
vi

si
te

d
no

de
s

8× 8 balanced

−6 −4 −2 0 2 4 6
0

200

400

600

800

1,000

1,200

1,400

SNR [dB]

8× 8 unbalanced

No Perm: Perm Exact: Perm Approx:

Normal SD 9b 9b 9b

17b 17b 17b

Fig. 4. Mean visited nodes of 20000 simulations for 4×4 and 8×8 MIMO
systems.

the different lines, the factor 1
ml−1 is irrelevant and can

be disregarded. Because of the turned computing order of
the Sphere Decoding, a descend sorting of T1i leads to an
unbalanced permutation, an ascend sorting to a balanced
permutation. The results of the approximation will be shown
in the following section.

IV. SIMULATION RESULTS

To evaluate the presented approach, a simulation with
a conventional Sphere Decoder and the explained different
permutations is executed. In this simulation every Sphere De-
coder uses the Schnorr-Euchner algorithm with an adaptive
search radius r0 =∞. For reduction of the solutions Unum
type-II-based 9-Bit and 17-Bit SORN-preprocessors [6][7]
are used.
As metric, the number of visited nodes [4] is used. Every
node error from equation (4) which is calculated is counted
as a visited node. In contrast to floating-point-operations
(FLOPs) the greater computation effort of lower tree levels is
not considered by this metric. But in reference to a hardware
implementation this measure might be useful, because the
same hardware could be used for different tree levels. In
figure 4 the results of 20000 simulations for a 4 × 4 and
8 × 8 MIMO-system are presented. The average number of
visited nodes is visualized depending on the SNR. Reducing
the symbol tree using 9-bit-SORNs without any permutation
leads to a very slight reduction of the visited nodes. Using

17-bit SORNs leads to a significant reduction in particular
in a negative SNR-range. For a balanced permuting all
curves lie above the normal Sphere Decoding, which means a
deterioration of the performance. An unbalanced permutation
results in a performance improvement. The different sorting
algorithms from code 1 and 2 differ minimally but the
approximated algorithm which is easier to implement leads
to slightly better results. Overall the computing time of
the Sphere Decoder is reduced to values between 42.30%
(SNR = −6 dB) and 17.19% (SNR = 6dB).
The results of the 8 × 8 MIMO-system also show reduc-
tions for an unbalanced tree permutation. The approximative
version of the permutation again leads to better results than
the exact one. Particularly, for negative SNR (52.15% for
SNR = −6 dB) the profit is much higher in comparison to
the 4× 4-system.
In relation to the overall effort of the Sphere Decoder it
should be noted, that only the number of visited notes is
decreased. The cost of the approximative version of the
permutation can be determined by line 2-3 in code 2 and are
estimated by N×(m−1) additions, N×m square operations
and N/2 (N−1) comparisons which all are integer operations.
The SORN preprocessing also leads to a small increase in
complexity which is considered in [7].

V. CONCLUSION

This paper presents the application of reducing the solu-
tion set of a Sphere Decoder via 9-bit and 17-bit SORN-
arithmetics. It is shown that the processing time of the
Sphere Decoder can be reduced by 17% to 52% using 4× 4
and 8× 8 QPSK-MIMO-Systems and an unbalanced sorting
algorithm. For future work, it must be considered that the
SORN preprocessing and the permutation algorithm reduce
the achieved performance gain by means of complexity and
computing time.

REFERENCES

[1] E. G. Larsson, “MIMO detection methods: How they work,” IEEE
signal processing magazine (Print), vol. 26, no. 3, pp. 91–95, 2009.

[2] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the
sphere decoder for MIMO detection,” IEEE Transactions on Wireless
communications, vol. 7, no. 6, pp. 2131–2142, 2008.

[3] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-forcing meth-
ods for downlink spatial multiplexing in multiuser MIMO channels,”
IEEE transactions on signal processing, vol. 52, no. 2, pp. 461–471,
2004.

[4] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the
sphere decoding algorithm,” IEEE Journal of solid-state circuits,
vol. 40, no. 7, pp. 1566–1577, 2005.

[5] J. L. Gustafson, The end of error: Unum computing. Boca Raton:
CRC Press, 2015.

[6] ——, “A radical approach to computation with real numbers,” Super-
computing frontiers and innovations, vol. 3, no. 2, pp. 38–53, 2016.

[7] M. Bärthel, P. Seidel, J. Rust, and S. Paul, “SORN Arithmetic for
MIMO Symbol Detection - Exploration of the Type-2 Unum Format,”
in 2019 17th IEEE International New Circuits and Systems Conference
(NEWCAS), June 2019, pp. 1–4.

[8] E. Süli and D. F. Mayers, An introduction to numerical analysis.
Cambridge university press, 2003.

[9] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved
practical algorithms and solving subset sum problems,” Mathematical
programming, vol. 66, no. 1-3, pp. 181–199, 1994.

[10] J. J. Duistermaat and J. A. C. Kolk, Distributions : Theory and
Applications, ser. Cornerstones. New York, NY: Birkhauser, 2010,
chapter 6, page 61.

