Accelerating the AES Algorithm using OpenCL

Theodora Sanida
Department of Electrical &
Computer Engineering
University of Western Macedonia
Kozani, 50131, Greece
thsanida@uowm.gr

Abstract—Nowadays, cryptography plays an important role in
the field of information security. The most common symmet-
ric cryptographic algorithm is Advanced Encryption Standard
(AES), which is based on the well-known Rijndael algorithm and
is used worldwide in every domain. In this document, we present
the implementation of the AES algorithm in two parallel modes
of operation (CTR and XTS) with the OpenCL programming
language. We used OpenCL because it is designed for parallel
computing on heterogeneous platforms and ensures portability.
Furthermore, we applied 128, 192 and 256 bit cryptographic key
size and a file size ranging from 512B to 8MB to evaluate the
performance of the kernel runtime and throughput (Gbps). The
results have shown that, the performance of the CTR mode is
better than the XTS mode. CTR mode speeds up the process
of encryption with 128 bit key over 10.15%, 192 bit key over
10.09% and 256 bit key over 10.05%. The decryption process
shows 128 bit key acceleration over 10.11%, 192 bit key over
10.05% and 256 bit key over 10.02%. Finally, comparing the
results of our implementation to other similar parallel models,
we have achieved better throughput performance.

Index Terms—Cryptography, OpenCL, Advanced Encryption
Standard (AES), Rijndael, CTR, XTS, Graphics Processing Unit
(GPU), Block cipher.

I. INTRODUCTION

Today, in order to increase performance, many crypto-
graphic algorithms are implemented on GPUs. In recent years,
the use of GPUs has increased significantly as they perform
many more floating point operations than CPU, at the same
time [1]. The AES, which encrypts and decrypts the data in
blocks, has been adopted as a standard for symmetric cryptog-
raphy by the National Institute of Standards and Technology
(NIST) [2]. AES uses 128 bit blocks and its cryptographic key
can be 128, 192 or 256 bits. Because GPUs perform many
operations at the same time, the AES algorithm is a good
application for this architecture [3].

The AES specification defines many modes of operation.
The most common being Electronic Codebook (ECB), Ci-
pher Block Chaining (CBC), Cipher Feedback (CFB), Output
Feedback (OFB), XEX-based tweaked-codebook mode with
ciphertext stealing (XTS) and Counter mode (CTR) [4]. The
ECB, CTR and XTS support parallel operations in both
encryption and decryption and can benefit from a parallel
GPU application. We used CTR and XTS mode, as they
allow simultaneous execution of the encryption and decryption

Argyrios Sideris
Department of Electrical &
Computer Engineering
University of Western Macedonia
Kozani, 50131, Greece
asideris@uowm.gr

Minas Dasygenis
Department of Electrical &
Computer Engineering
University of Western Macedonia
Kozani, 50131, Greece
mdasyg@ieee.org

process.We did not use the ECB mode of operation because
it lacks integrity.

In this paper, we present the findings of our research
endeavor on implementing the algorithm AES in CTR and
XTS mode with cryptographic keys 128, 192 and 256 bit in
the GPU. The implementation of AES was performed with
OpenCL programming language. We have used the OpenCL
instead of other similar programming paradigms, because it is
designed to accelerate parallel computing on heterogeneous
platforms, while ensuring portability [5]. We compare the
results of the three AES key sizes in the encryption and
decryption process with file sizes ranging from 512B to
8MB and compare the throughput with other similar parallel
implementations of other researchers, in Section V.

The paper structure is organized as follows. In Section II we
give an overview of research work similar to ours. In section
IIT we discuss the AES algorithm and modes of operation.
Section IV provides an outline of the procedure followed for
implementing AES in CTR and XTS mode on OpenCL. In
section V, we present the results of our research. We conclude
our article with the summary in Section VI.

II. RELATED WORK

In this section, we present research that is similar to ours. In
[6], the authors develop the implementation of the symmetric
key cryptography algorithm AES, named clAES, using the
OpenCL standard. They present comparisons of the results
obtained with clAES benchmarking across different multi-
core architectures. They also introduce the basic concepts of
AES and OpenCL in order to describe the details of clAES
implementation. In their work they do not mention what mode
of operation they are implementing.

Gilger et al. [7] present the capabilities and limitations of
GPU accelerated block cryptography as implemented using
CUDA and OpenCL in the form of an OpenSSL cryptographic
library. Both GPU frameworks are capable of delivering high
performance. They accelerate symmetric block cryptographers
(AES, DES, Blowfish, Camellia, CASTS5, IDEA) using GPUs
compared to traditional CPU applications. In their work they
implement the ECB and the CBC mode while we are imple-
ment the XTS mode.

In [8], authors propose a CUDA implementation of ECB
mode encoding process and CBC mode decoding process on

GPU, in order to improve the efficiency of AES algorithm.
Although, their implementation achieves high throughput of
60Gbps with use of the ECB and CBC modes, the algorithm’s
security is reduced compared to the CTR and XTS modes,
where they provide maximum security for brute force attacks.

On [9] they implement an accelerated GPU framework in
mobile devices using the XTS AES encryption algorithm.
Their results showed that the performance of the proposed
system can highly surpass any equivalent CPU based encryp-
tion system for mobile device users. In their work they do not
implement CBC mode.

In contrast with these authors, we present our implemen-
tation of the AES algorithm for GPU using OpenCL for the
two highest security modes of CTR and XTS. We performed
many tests of the AES Algorithm in CTR and XTS mode
using the same graphics card (Nvidia GeForce GTX 1060) and
observed large performance differences. We achieved better
throughput than the compared implementations of the other
presented works.

III. AES ENCRYPTION AND DECRYPTION ALGORITHM

AES is the most widely used symmetric encryption algo-
rithm and uses the same key in the encryption and decryption
process. The plain text length is fixed at 128 bits, while the
length of the cryptographic key varies and can be 128, 192 or
256 bits depending on the degree of security required.

The AES is an iterative algorithm and the total number of
rounds required for the encryption/decryption process can be
10, 12 or 14 depending on the size of the cryptographic key
used 128, 192 or 256 bits respectively. Each round consists of
four transformations (SubBytes, ShiftRows, MixColumns and
AddRoundKey). In the final round, the MixColumns transfor-
mation is ignored. Table I illustrates the relation between the
total number of rounds and key’s length.

TABLE I
KEY LENGTH AND TOTAL NUMBER OF ROUNDS (32-BIT WORDS)

AES Key Length Block Size Number of
(Nk Words) (Nb Words) Rounds(Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

A mode of operation is an algorithm to provide authenticity
or confidentiality. The AES defines many modes of operation,
the most common with parallel processing in encryption and
decryption are ECB, CTR and XTS [10]. A simple comparison
of these parallel modes of operation is listed in Table II.

IV. IMPLEMENTATION

In this section, we present the application of the AES
algorithm to CTR and XTS mode of operation using the
OpenCL 1.2 in the three sizes of the cryptographic key.

The OpenCL is an open standard aimed to heterogeneous
architectures. So, we decided to use the OpenCL language
because has the advantage of portability and the same code

TABLE II
COMPARISON OF PARALLEL MODES OF OPERATION

Mode Description

For a given key, the forward cipher function is applied
independently and directly to each block of the plaintext.
It is prone to cryptanalysis because there is a direct
relationship between plaintext and cryptography.

The application of the forward cipher to a set of input
blocks, called counters, to produce a sequence of output
blocks that are exclusive-ORed with the plaintext to
produce the ciphertext, and vice versa.

The standard provides using a different key for the IV
encryption than for the block encryption; this is contrary
to the intent of XEX and seems to be rooted in a
misinterpretation of the original XEX paper, but does not
harm security.

ECB

CTR

XTS

can be compiled and executed in a variety of architectures,
from CPU up to custom FPGA designs.

The implementation of the AES algorithm of CTR and XTS
mode of operation was performed with 128, 192 and 256 bits
cryptographic keys with the C programming language. The
implementation of AES in CTR and XTS mode of operation
was tested using valid AES test samples and verified the results
recommended in [4].

The AES block cipher can be implemented with differ-
ent granularity of parallelism processing. The granularity of
parallel processing can be 1, 4, 8 and 16 bytes per thread.
We did several tests for 1, 4, 8 and 16 bytes per thread
granularity and found that 16 bytes per thread had significantly
higher performance. So our implementation uses 16 bytes per
parallel granulation. That means that each thread is mapped to
a 16 bytes AES plaintext block and the blocks are processed
simultaneously. So, one thread handles an AES block and
therefore no synchronization between the threads is required.

The CPU reads the input data file first. The input data file
can be either encrypted or decrypted text. The parameters of
the AES algorithm are the length of the 128,192 or 256 bit
cryptographic key, the cryptographic key, the operating mode
(CTR or XTS), and the procedure to be performed (encryption
or decryption). All the data are stored in the host CPU main
memory.

Host CPU

Choose Platform OpenCL Device

Choose Devices

Create Context

Global Memory Kernel

Create Command Queue

Plain text Hain text Work - group
Key

Key

. S-box Work - group
Memory buffers

Memory buffers 4
Work- group

‘ Output data file J‘ Output data file

Fig. 1. Arcitecture of the AES with OpenCL

Subsequently we select the platform and device, by quering

the operating system for all the OpenCL devices and secting
the one belonging to the GPU class. The parameters for
the device are also adjusted by creating the context queue
and commands. Here is the definition of the objects that are
transferred to the kernel.

The objects that are transferred to the global memory of
the GPU are the input data file, the output data file, the
encryption key, the S-box as well as various memory buffers.
Plaintext is initially transferred and stored on global memory.
When the encryption or decryption process begins, plaintext is
transferred into the shared memory to share the intermediate
data.

We execute the kernel in the GPU. The encryption key
and the S-box are calculated serially. The S-box is stored in
the shared memory. The round keys are read only data and
are shared by all threads, according to the constant memory
characteristics. The kernel serially executes transformations of
SubBytes, ShiftRows, MixColumns and AddRoundKey. The
final round doesn’t include the MixColumns. Finally, when
the kernel completes its computations, the output data file is
stored in the global memory of the GPU and transferred back
to the CPU. Figure 1 shows our implementation architecture
of the AES with OpenCL.

V. EXPERIMENTAL RESULTS

In this section we will present the performance and compare
the AES algorithm in CTR and XTS mode using the OpenCL
1.2 programming language with 128, 192 and 256 bit crypto-
graphic keys. The plaintext or ciphertext file size ranges from
512MB to 8MB.

A. Evaluation Environment

In our experiments, we used Visual Studio 2019 software
on Windows 10 Professional 64-bit, Intel Core i7 8750H
(2.20GHz) processor, 16GB DDR4 RAM and Nvidia GeForce
GTX 1060 graphics card. The Nvidia GeForce GTX 1060 has
1280 cores, GDDRS memory type, 192 bit bus width, 1709
MHz Processor Clock and 2002 MHz Memory Clock. The
detailed technical specifications of the hardware and software
used in this work are given in Table III.

TABLE III
HARDWARE AND SOFTWARE TECHNICAL SPECIFICATIONS

Component | Description

Processor: Intel Core 17 8750H (2.20GHz),
Hardware RAM Memory: 16GB DDR4 - 2666MHZ,

Graphics Board: Nvidia GeForce GTX 1060, 6144MB
Software Windows lQ Professional 64-bit,

Visual Studio 2019
Drivers Nvidia CUDA toolkit version: 10.1

B. Evaluation result

Time measurement was performed using the time.h library
and specifically clock_gettime() function. Time measurement
includes the kernel execution time (in ms) and does not include
the time needed to transfer the data in the GPU.

Table IV show the execution times of the kernel (in ms) in
CTR mode of operation against the encryption and decryption
process at input file sizes from 512B to SMB with 128, 192
and 256 bit cryptographic keys. Table V reports the execution
times of the kernel (in ms) in XTS mode of operation against
the encryption and decryption process at file sizes from 512B
to 8MB with three cryptographic keys.

TABLE IV
RESULT OF THE AES KERNEL (IN MS) IN CTR MODE OF OPERATION WITH
THREE CRYPTOGRAPHIC KEYS

AES Implementation in CTR mode of operation
Encryption key Decryption key
length (ms) length (ms)
filzl: 128 bit | 192 bit | 256 bit | 128 bit | 192 bit | 256 bit
512B 0,09 0,12 0,16 0,11 0,14 0,16
1KB 0,14 0,17 0,20 0,16 0,19 0,22
2KB 0,29 0,33 0,36 0,28 0,30 0,33
8KB 0,72 0,73 0,77 0,72 0,76 0,80
32KB 1,90 2,18 2,34 1,81 2,10 2,26
128KB 6,34 8,13 10,44 6,98 8,99 10,91
512KB 26,37 30,37 34,41 28,21 30,32 36,41
2MB 116,01 119,84 124,34 117,04 120,47 124,87
8MB 768,99 | 777,06 | 78242 | 773,47 | 782,14 | 787,14

CTR mode accelerates all key sizes in both encryption and
decryption. The tables resulting that the CTR mode shows an
accelerated process of 128 bit encryption over 10.15%, 192 bit
over 10.09% and 256 bit over 10.05%. The decryption process
shows 128 bit key acceleration over 10.11%, 192 bit key over
10.05% and 256 bit key over 10.02%. Figures 2 and 3 show
the acceleration of the CTR mode over the XTS mode during
the encryption/decryption process with the three key sizes and
file size from 512B to 8MB.

Speed Up CTR mode (Encryption file)

1420

A
TAY
b AN
wmig /AN
77\\
e 71—\
S e i \\
= /i W\
o N /i T\
2.5 X /i A
LA /i B Y
NN /i \
AN i \
be AN A \
e N\ Py L
| — &
L N

0960

s128 148 28 88 32k8 1288 s12Ke M8 sme
Input File Size
—+—128 bit key length (ms)

~#-192 bitkey length (ms) 256 bit key length (ms)

Fig. 2. Speed Up (times) in CTR mode (Encryption file)

Finally, we compare the AES in CTR and XTS mode of
operation with similar parallel implementations on the GPU of
other researchers. The most significant metric for comparing
and evaluating the proposed implementation of the AES with
other parallel implementations is throughput. The throughput
is calculated using Equation 1.

TABLE V
RESULT OF THE AES KERNEL (IN MS) IN XTS MODE OF OPERATION WITH
THREE CRYPTOGRAPHIC KEYS

AES Implementation in XTS mode
Encryption key Decryption key
length (ms) length (ms)
glzl: 128 bit | 192 bit | 256 bit | 128 bit | 192 bit | 256 bit
512B 0,12 0,15 0,18 0,15 0,16 0,18
1KB 0,17 0,20 0,22 0,18 0,21 0,25
2KB 0,31 0,33 0,36 0,32 0,34 0,37
8KB 0,76 0,77 0,80 0,77 0,80 0,82
32KB 2,11 2,39 2,51 2,20 2,47 2,41
128KB 8,74 10,89 12,04 9,73 11,74 13,14
512KB 30,75 33,17 36,94 33,73 35,02 37,90
2MB 124,99 | 126,07 | 128,11 125,88 | 127,36 | 129,22
8MB 780,14 | 783,74 | 786,14 | 782,03 | 78593 | 788,41
Throughput =1T,/E; (MB/Sec) (1)

In Equation 1, T}, is the total plaintext encrypted and E; is
the total encryption or decryption time. Table VI summarizes
the results achieved by other parallel implementations in
throughput. This was achieved because we significantly im-
proved the performance of the kernel using constant memory
and 16 bytes per parallel granulation.

Speed Up CTR mode (Decryption file)

JA\
/\
/—\
/e
1 | AN
/7 NE
/ /N \
774 AV
17 N\
17 AN
\ e

1150 [M
1130 S\ 1/

Speed Up
/
v

! Wt

si28 168 28 sxe 32xe 1868 s12k8 v sve
Input File Size
—+—128bitkey length (ms)

~m-192 bitkey length (ms) 256 bit key length (ms)

Fig. 3. Speed Up (times) in CTR mode of operation (Decryption file)

VI. CONCLUSIONS

In this work we present the effectiveness of modern graphics
processing units in symmetric key cryptographic solutions. We
implemented the AES algorithm in CTR and XTS mode of
operation with 128, 192 and 256 bit key lengths with OpenCL
programming language. We used the Nvidia GeForce GTX
1060 graphics card. The file size we used ranged from 512B
to SMB.

The results showed that CTR mode shows acceleration for
all file sizes and for all thee key sizes. In the process of
128 bit encryption, acceleration is over 10.15%, with 192 bit
over 10.09% and 256 bit over 10.05%. The decryption process

shows 128 bit key acceleration over 10.11%, 192 bit key over
10.05% and 256 bit key over 10.02%.

Finally, the results show that our implementations achieve
better throughput in XTS mode of at least 12.86% and in CTR
mode of 14.71%. In our future work, we will optimize further
the AES algorithm using block cipher modes of operation
CTR and XTS, and we will evaluate the algorithm in FPGA
architectures.

TABLE VI
THE COMPARISON OF OUR INPLEMENTATION WITH OTHER SIMIULAR
IMPLEMENTATION OF THE AES IN CTR AND XTS MODE OF OPERATION

Paper GPU Device Language | Mode Th{g‘;ilg)ut
2014 [11] ATI HD 7670M OpenCL CTR 5.04
2011 [12] | Nvidia GTX 285 OpenCL XTS 8.59
2011 [12] | Nvidia GTX 285 CUDA XTS 9.74
2017 [13] | Nvidia GT 555M OpenCL CTR 10.00
2009 [14] Nvidia GT 8800 CUDA CTR 12.50
Our work | Nvidia GTX 1060 OpenCL XTS 12.53
Our work | Nvidia GTX 1060 OpenCL CTR 14.71

REFERENCES

[1] K. Fatahalian and M. Houston, “A closer look at GPUs,” Communica-
tions of the ACM, vol. 51, no. 10, pp. 50-57, 2008.

[2] NIST, “Advanced encryption standard (AES),” Nov 2001. [Online].
Available: https://csrc.nist.gov/publications/detail/fips/197/final

[3] P.FIPS, “197: Specification for the advanced encryption standard, 2001,”
http://www. csrc. nist. gov/publications/fips/fips197/fips-197. pdf, vol. 4,
pp. 17-18, 2009.

[4] M. Dworkin, “Recommendation for block cipher modes of operation.
methods and techniques,” National Inst of Standards and Technology
Gaithersburg MD Computer security Div, Tech. Rep., 2001.

[5] “The OpenCL specification v1.2,” Nov 2012. [Online]. Available:
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

[6] O. Gervasi, D. Russo, and F. Vella, “The AES implantation based
on OpenCL for multi/many core architecture,” in 2010 International
Conference on Computational Science and Its Applications. 1EEE,
2010, pp. 129-134.

[7]1 J. Gilger, J. Barnickel, and U. Meyer, “GPU-acceleration of block
ciphers in the OpenSSL cryptographic library,” in International Con-
ference on Information Security. Springer, 2012, pp. 338-353.

[8] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation and
analysis of AES encryption on GPU,” in 2012 IEEE 14th International
Conference on High Performance Computing and Communication &
2012 IEEE 9th International Conference on Embedded Software and
Systems. 1EEE, 2012, pp. 843-848.

[9] M. A. Alomari and K. Samsudin, “A framework for GPU-accelerated

AES-XTS encryption in mobile devices,” in TENCON 2011-2011 IEEE

region 10 conference. 1EEE, 2011, pp. 144-148.

M. Dworkin, “Recommendation for block cipher modes of operation:

methods for format-preserving encryption,” NIST Special Publication,

vol. 800, p. 38G, 2016.

Y. Yuan, Z. He, Z. Gong, and W. Qiu, “Acceleration of AES encryption

with OpenCL,” in 2014 Ninth Asia Joint Conference on Information

Security. 1EEE, 2014, pp. 64-70.

X. Wang, X. Li, M. Zou, and J. Zhou, “AES finalists implementation

for GPU and multi-core CPU based on OpenCL,” in 2011 IEEE Inter-

national Conference on Anti-Counterfeiting, Security and Identification.

IEEE, 2011, pp. 38-42.

V. Conti and S. Vitabile, “Design exploration of AES accelerators on

FPGAs and GPUSs,” Journal of Telecommunications and Information

Technology, 2017.

A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi, “Design of

a parallel AES for graphics hardware using the CUDA framework,”

in Proceedings of the 2009 IEEE International Symposium on Paral-

lel&Distributed Processing. 1EEE Computer Society, 2009, pp. 1-8.

[10]

[11]

[12]

[13]

[14]

