
A Heterogeneous Implementation of the Sobel Edge
Detection Filter Using OpenCL

Theodora Sanida
Department of Electrical &

Computer Engineering
University of Western Macedonia

Kozani, 50131, Greece
thsanida@uowm.gr

Argyrios Sideris
Department of Electrical &

Computer Engineering
University of Western Macedonia

Kozani, 50131, Greece
asideris@uowm.gr

Minas Dasygenis
Department of Electrical &

Computer Engineering
University of Western Macedonia

Kozani, 50131, Greece
mdasyg@ieee.org

Abstract—Today, edge detection is a cornerstone technique as
edges are essential in many applications, such as image processing
and biometric imaging. One popular algorithm for edge detection
is the Sobel. Many researchers have focused on accelerating the
Sobel filtering, but to the best of our knowledge we are the
first to propose a 5×5 convolution kernel implementation using
OpenCL. In this work, we implement the Sobel filter, one of the
most effective and popular edge detection algorithms in image
processing, in the OpenCL programming language. From the
implementation of the Sobel algorithm we compare the perfor-
mance of the CPU and GPU through OpenCL, in typical images
ranging from 64×64 to 4096×4096 pixels. The Sobel operator uses
a pair of 3×3 horizontal and vertical convolution kernels for edge
detection functions. We apply 3×3 and 5×5 convolution kernels
using OpenCL and compare them. The results have shown that
for all image sizes, the GPU speed up ranges from 11,18 to
15,46 times with 3×3 convolution kernels, while speed up is from
10,05 to 13,46 times for the 5×5 convolution kernels. Finally, the
results of our implementation are compared to other existing
implementations and found to achieve better performance.

Index Terms—Sobel Edge Detection, Sobel Filter, Sobel Oper-
ator, OpenCL, Image Processing, Convolution Kernel.

I. INTRODUCTION

All the important information and all the key features
contained in an image can be extracted from the edges. The
edges are characterized by strong local fluctuations and define
boundaries between regions. An edge is formed between the
borders of two different regions in an image [1], [2].

Edge detection is the process of locating an edge in an
image. This process results in a significant reduction in image
size, while filtering out information that may be considered
less relevant and retaining the important structural properties
of an image. Thus, in the process of detecting the edges, any
type of redundancy contained in the image is removed. In
addition, this process helps in segmentation, data compression
and object recognition [3], [4]. The main purpose of edge
detection is to simplify the pixels of the boundaries of an im-
age aiming minimization the amount of data to be processed.
The Sobel Edge Detection Filter is one of the most effective
edge detection algorithms shaving a relatively low arithmetic
complexity and is used as a pre-processing step in several
computer and machine vision algorithms [5].

In our research, we use the OpenCL 1.2 programming
language for edge detection with the Sobel algorithm. OpenCL
has the advantage of portability because it can be executed on
many different architectures. We performed our experiments
on a set of images with resolution ranging from 64×64 to
4096×4096 pixels. The Sobel filter was applied to gray scale
images and we used 3×3 and 5×5 convolution kernels to
evaluate the CPU performance of GPU devices.

The remainder of the paper is organized as follows: in
Section II, we give an overview of works similar to ours.
In Section III we discuss the Sobel edge detection operator.
Section IV gives an outline of the procedure followed for
accelerating the Sobel algorithm using OpenCL. In Section V,
we present the results of our research. Finally, the conclusion
of our research is outlined in Section VI.

II. RELATED WORK

In this section, we present research that is similar to ours. In
[6], the authors propose a function in MatLab software to find
Sobel edges using kernels whose dimensions are 5×5. The
new function in MatLab uses a two-dimensional gray-scale
image. They use a set of 8 images (256×256 pixels) with 3×3
and 5×5 convolution kernels. Experiments have shown that the
larger the convolution kernel, the lower the image sensitivity
to noise.

The authors in paper [7], develop a function with MatLab
software for a 5×5 convolution kernel in the Sobel algorithm.
They compare 5 images with 3×3 and 5×5 convolution kernels.
Experiments have shown that with the 5×5 convolution kernels
the Sobel operator is slower to compute but exhibits less noise
sensitivity. They concluded, the larger the convolution kernel
is, the lower the image sensitivity to noise is as well, while the
Sobel operator exhibits higher output values for similar edges.

On [8] the authors compare the edge detection method with
Canny and Sobel algorithms in MRI (Magnetic Resonance
Imaging) images. In order to compare each slice of MRI
images they tested both methods. The Sobel operator uses
a 3×3 mask while the Canny operator uses an adjustable
mask. Their results showed that the Canny edge detection was
better than the Sobel detector result but with a muchhigher
complexity.



In [9], the authors extended Sobel, Prewitt, and Kirsch edge
operators from 3×3 kernels to 5×5 kernels in mammographic
images. The results showed that 5×5 kernels in Sobel, Prewitt
and Kirsch algorithms are better than 3×3 kernels. Amongst
Sobel, Prewitt and Kirsch edge operators with 5×5 kernels,
Sobel gives comparatively better results.

In contrast to these authors, we present the first hetero-
geneous implementation of Sobel Edge Detection algorithm
with 3×3 and 5×5 convolution kernels using OpenCL. The
proposed design is optimized for performance compared to
existing parallel implementations.

III. SOBEL EDGE DETECTION OPERATOR

The Sobel Edge Detection algorithm separately detects
horizontal and vertical boundaries in an image. The Sobel
operator performs a 2-D spatial gradient measurement on
images and usually uses a pair of 3×3 horizontal and vertical
convolution kernels [5].

A pair with 3×3 convolution kernels is shown in Figure 1.
The first kernel (Gx) calculates the slope in the x (columns)
and the other (Gy) calculates the tilt in the y (rows) direction.
Figure 2 shows the convolution using a 3×3 kernel. The
Sobel Edge Detection convolution kernels are expanded to 5×5
dimensions [6], [7], [9]. A pair of 5×5 convolution kernels is
shown in Figure 2.

Fig. 1. Sobel masks with 3×3 dimensions.

Sobel operator based edge detection plays a significant role
in a wide variety of image processing applications because
it neutralizes effectively the noise sensitivity and marks also
effectively the edges in an image. A more detailed description
of the Sobel algorithm is described in [10], [11].

Fig. 2. Sobel masks with 5×5 dimensions.

IV. IMPLEMENTATION

In this section, we present our implementation of the Sobel
algorithm using the OpenCL 1.2 programming language, in
different image sizes.

We decided to use the OpenCL language, the de-facto
progamming standard for heterogeneous implementations,
which mean that the same code can be compiled and executed
in a variety of architectures, from CPU up to custom FPGA
designs. In our work, we applied the OpenCL 1.2 with the
Sobel operator to 3×3 convolution kernels (as shown in Figure
1) and 5×5 (as shown in Figure 2) with resolution ranging from
64×64 to 4096×4096 pixels.

Fig. 3. Convolution using a 3×3 kernel.

First, CPU reads the original BMP color image. The original
color BMP image is converted into a grayscale image. A pixel
color in an image is a combination of three colors Red, Green,
and Blue (RGB). The Equation (1), is used to convert a pixel to
gray scale. The R, G, and B symbols correspond to the channel
name and fvalue contains the final pixel value. Converting
the original BMP color image to a gray scale image is not
included in our measurements.

fvalue = (0.21R+ 0.72G+ 0.07B) (1)

The parameters of the Sobel algorithm are the BMP gray
scale image and the convolution kernel to be executed (3×3
or 5×5). Then the platform and the device (CPU or GPU) are
selected, the context and command queue for the device are
created. Here is the definition of the objects that are transferred
from host CPU to OpenCL device global memory.

The objects that are transferred to the GPU are the input
grayscale image, image rows, image columns, output grayscale
image and others memory buffers. A convolution kernel
describes how each pixel in an image is influenced by its
neighbors. Figure 3 shows the convolution using a 3×3 kernel.
In the kernel the input image is read-only and the output image
is write-only.

We define two dimensions: get global id, the first id cor-
responds to the current focused pixel and the second to the
output pixel position. We read the values of 8 pixels around the
current pixel in the neighborhood of 3×3 or of 24 pixels around
the current pixel in the neighborhood of 5×5 and compute the
slope x (columns) and the tilt in the y (rows). The output value
is written in exactly the same position in the output image.
The kernel that uses constant memory is executed so that all
the kernel interfaces are stored in the cache during execution.



Constant memory of OpenCL contains data that is immutable
during the kernel.

A gray scale image has only one channel and this channel
represents the intensity of whites. Therefore, for a gray scale
image, the Sobel algorithm will be executed once. Finally,
when the kernel completes its computation, the output data is
stored in global memory and transferred back to host CPU.
Figure 4 shows the implementation architecture of the Sobel
filter with OpenCL.

Fig. 4. Implementation architecture of the Sobel filter.

V. EXPERIMENTAL RESULTS

In this section, we present and compare the Sobel algorithm
on GPUs and CPUs through OpenCL 1.2, in different image
sizes.

Experiments were performed on gray scale BMP im-
ages with resolution: 64×64, 128×128, 256×256, 512×512,
1024×1024, 2048×2048 and 4096×4096 pixels. We used the
OpenCL1.2 programming language. OpenCL has the advan-
tage of portability. The implementation code was written in C
programming language.

A. Evaluation Environment

We used Visual Studio 2019 for the software implementa-
tion. In these experiments we utilized the Intel Core i7 8750H
processor and the Nvidia GeForce GTX 1060 graphics card.
The detailed technical specifications of the hardware and the
software used in this document are reported in Table I.

TABLE I
HARDWARE AND SOFTWARE TECHNICAL SPECIFICATIONS

Component Description

Hardware
Processor: Intel Core i7 8750H (2.20GHz),
RAM Memory: 16GB DDR4 - 2666MHZ,
Graphics Board: Nvidia GeForce GTX 1060, 6144MB

Software Windows 10 Professional 64-bit,
Visual Studio 2019

Drivers Nvidia CUDA toolkit version: 10.1

B. Evaluation result

Time measurement was performed using the time.h library
and clock gettime() function was used. Time measurement
includes the image loading to GPU memory, kernel creation

time and kernel execution time. Time measurement does not
include program initializations, image input and output image.
The transformation of the color space was not included in
our measurements similar with other researchers. Each time
measurement was performed with the execution of 20 images
per size and their average execution time was recorded.
Experiments show that the performance of the GPU, for all
image sizes, is improved in both 3×3 and 5×5 convolution
kernels.

In figure 5 the first image is the original, the second image
shows the resulting image with a 3×3 convolution kernels
and the third image shows the resulting image with a 5×5
convolution kernels. From the figure we observe that the 5×5
convolution kernels provide much greater accuracy in edge
detection and less noise sensitivity.

Fig. 5. Resulting images with 3×3 and 5×5 convolution kernels.

Table II and Table III show the results of our measurements
in milliseconds (ms), with 3×3 and 5×5 convolution kernels at
different image sizes. On the device OpenCL–GPU speed up
with 3×3 convolution kernels ranges from 11,18 to 15,46 times
while 5×5 convolution kernels range is from 10,05 to 13,46
times. Figure 6 shows that increasing the image resolution,
decreases the speedup which is justifiable by the fact that
increasing the image size, increases the ammount of data
to be transfered from the CPU to the GPU, and thus the
problem transforms from a computation intensive algorithm to
a memory access intenstive algorithm. The memory bus incurs
a bottleneck penalty. We have noticed it and are working on
techniques to alleviate this.

TABLE II
RESULTS WITH 3×3 CONVOLUTION KERNELS AT DIFFERENT IMAGE SIZES

Image resolution
(px)

OpenCL-CPU
(ms)

OpenCL-GPU
(ms)

Speed Up
OpenCL-GPU

(times)
64×64 1,469 0,095 15,46

128×128 1,754 0,114 15,39
256×256 2,470 0,162 15,25
512×512 2,611 0,172 15,18

1024×1024 7,988 0,601 13,29
2048×2048 11,373 0,926 12,28
4096×4096 12,472 1,116 11,18

Finally, we compare the Sobel algorithm with 3×3 con-
volution kernels on GPUs through OpenCL 1.2 with sim-
ilar implementations of other researchers we found in the
literature. Table IV shows the execution time in milliseconds
(ms). In the conducted experiments, the image 2048×2048 has



TABLE III
RESULTS WITH 5×5 CONVOLUTION KERNELS AT DIFFERENT IMAGE SIZES

Image resolution
(px)

OpenCL-CPU
(ms)

OpenCL-GPU
(ms)

Speed Up
OpenCL-GPU

(times)
64×64 1,633 0,121 13,46

128×128 1,892 0,145 13,03
256×256 2,682 0,209 12,81
512×512 3,016 0,239 12,62

1024×1024 9,987 0,837 11,93
2048×2048 12,673 1,174 10,79
4096×4096 13,572 1,351 10,05

Fig. 6. OpenCL–GPU speed up in the 3×3 and 5×5 convolution kernels.

the best performance. The comparison of results shows that
the proposed implementation of the Sobel operator with 3×3
convolution kernels at different image sizes on GPU using
the OpenCL 1.2, improves the speed compared to the Cuda
on GPU. In terms of similar parallel implementations, we are
showing better acceleration from 11,64% to 27,00% and have
the advantage of independent architecture using the OpenCL.
This was achieved because we significantly improved the
performance of the kernel using constant memory and 16×1
pixel/work-item.

VI. CONCLUSIONS

In this work, we accelerated the Sobel filter with the
OpenCL 1.2 programming language. We used a set of images
with different resolution: 64×64, 128×128, 256×256, 512×512,
1024×1024, 2048×2048 and 4096×4096 pixels. The Sobel
filter was applied to gray scale images and we used 3×3 and
5×5 convolution kernels.

The results have shown that for all image sizes, the GPU
speed up is greater for both 3×3 and 5×5 convolution kernels.
The Sobel operator with a 5×5 convolution kernels offers
much better edge detection accuracy in the image than the
3×3 convolution kernels. In addition, it is observed that with
5×5 convolution kernels there is less sensitivity to the noise
of the image. The GPU shows speed up ranges from 11,18 to
15,46 times with 3×3 convolution kernels while range is from
10,05 to 13,46 times with the 5×5 convolution kernels.

TABLE IV
THE COMPARISON OF OUR IMPLEMENTATION WITH OTHER STATE OF THE
ART, REVEALS THAT OUR’S NOT ONLY CAN BE EXECUTED ON A VARIETY
OF ARCHITECTURES DUE TO THE OPENCL LANGAGE, BUT IT HAS ALSO A

LOWER COMPUTATIONAL TIME.

Image resolution
(px)

Our work
OpenCL GPU

(ms)

Cuda
[12]

Cuda
[13]

Cuda
[14]

128×128 0,114 0,150
256×256 0,162 0,190
512×512 0,172 0,200

1024×1024 0,601 0,700
2048×2048 0,926 1,210 1,472 2,500

We are the first to propose a heterogeneous implementation
of Sobel Edge Detection filter with 5×5 convolution kernels,
using OpenCL. In our future research we will optimize further
this algorithm, using pipeline and better data reuse, and we
will evaluate the algorithm in FPGA architectures. Finally, the
proposed implementation of the Sobel filter using OpenCL,
improves the speed compared with other similar parallel
implementations.

REFERENCES

[1] Juneja, M., & Sandhu, P. S. (2009). Performance evaluation of edge
detection techniques for images in spatial domain. International journal
of computer theory and Engineering, 1(5), 614.

[2] Perona, P., & Malik, J. (1990). Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on pattern analysis and machine
intelligence, 12(7), 629-639.

[3] Fisher, Y. (2012). Fractal image compression: theory and application.
Springer Science & Business Media.

[4] Acharjya, P. P., Das, R., & Ghoshal, D. (2012). Study and comparison
of different edge detectors for image segmentation. Global Journal of
Computer Science and Technology.

[5] Sobel, I. (1990). An Isotropic 3× 3 Gradient Operator, Machine Vi-
sion for Three–Dimensional Scenes. Freeman, H., Academic Pres, NY,
376379.

[6] Aybar, E. (2006). Sobel edge detection method for matlab. Anadolu
University, Porsuk Vocational School, 26410.

[7] Gupta, S., & Mazumdar, S. G. (2013). Sobel edge detection algorithm.
International journal of computer science and management Research,
2(2), 1578-1583.

[8] Othman, Z., Haron, H., Kadir, M. R. A., & Rafiq, M. (2009). Com-
parison of canny and Sobel edge detection in mri images. Computer
Science, Biomechanics & Tissue Engineering Group, and Information
System, 133-136.

[9] Kekre, H. B., & Gharge, S. M. (2010). Image segmentation using
extended edge operator for mammographic images. International journal
on computer science and Engineering, 2(4), 1086-1091.

[10] Vincent, O. R., & Folorunso, O. (2009, June). A descriptive algorithm
for sobel image edge detection. In Proceedings of Informing Science
& IT Education Conference (InSITE) (Vol. 40, pp. 97-107). Califor-
nia:Informing Science Institute.

[11] Jin-Yu, Z., Yan, C., & Xian-Xiang, H. (2009, April). Edge detection
of images based on improved Sobel operator and genetic algorithms. In
2009 International Conference on Image Analysis and Signal Processing
(pp. 31-35). IEEE.

[12] Nugteren, C., Corporaal, H., & Mesman, B. (2011, July). Skeleton-based
automatic parallelization of image processing algorithms for GPUs.
In 2011 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (pp. 25-32). IEEE.

[13] Wu, J., Song, Z., & Jeon, G. (2014). GPU-parallel implementation of
the edge-directed adaptive intra-field deinterlacing method. Journal of
Display Technology, 10(9), 746-753.

[14] Zhang, N., Chen, Y. S.,& Wang, J. L. (2010, March). Image parallel
processing based on GPU. In 2010 2nd International Conference on
Advanced Computer Control (Vol. 3, pp. 367-370). IEEE.


