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Abstract—This paper presents an analog circuit compris-
ing a multi-layer perceptron (MLP) applicable to the neural
network(NN)-based machine learning. The MLP circuit with
rectified linear unit (ReLU) activation consists of 2 input neurons,
3 hidden neurons, and 4 output neurons. Our MLP circuit
is implemented in a 0.6μm CMOS technology process with a
supply voltage of ±2.5V. An experimental case is conducted to
demonstrate the feasibility and effectiveness of the MLP circuit.
The simulation results show that our MLP circuit has a power
dissipation of 200mW, a wide range of working frequency from
0 to 1MHz, and a moderate performance in terms of the error
ratio.

Index Terms—multi-layer perceptron, neural network, ReLU
activation, neuron.

I. INTRODUCTION

Artificial neural network(ANN)-based machine learning,

known as a promising technology, has been researched widely

to enable the electronic devices more intelligent and efficient

[1]. ANN is inspired by the brain of living creatures which

contains components such as neurons, connections, weights,

and propagation function. ANN has a huge set of neurons that

are highly interconnected and arranged in layers. Its structure

mimics the function of dendrites, soma, and axon. Dendrites

serve as receiving inputs and are equivalent to the weighted

connections between neurons in ANN. Soma collects input

signals and generates an output, the output will result in a

response when the neuron cell has crossed the threshold, the

process is equivalent to the neuron and activation function

in ANN. Axon transmits an output signal to the dendrites

of other neurons in the subsequent layer, and is equivalent

to the connection between the hidden and output layers.

Perceptron is an essential element of ANN, which has multiple

inputs and a single output. It’s commonly represented by a

mathematical model as follows: each input is multiplied by a

weight and all weighted inputs are summed at the output, the

resulting sum is then passed through an activation function.

ANN-based machine learning fits the transfer function of the

system by a training process where input-output pairs are

iteratively presented, while the variable parameters/weights are

adjusted. The MLP is constituted by perceptron which is a

fundamental structure for the feedforward NN, in the VLSI

(very-large-scale integration) implementations incorporating

various learning algorithms, MLP is a common choice as it

has been continuously researched many years [2].

On the other hand, Ishiguchi et al. proposed an analog

perceptron circuit with DAC-based multiplier in the work [3]

aiming at the advanced sensor nodes, such as the biological

sensor systems introduced in [4] and [5]. In comparison with

the traditional sensor system where the central processing unit

and the signal processing unit are necessary. Analog VLSI

implementations are preferable for a sensor node as they have

lower power and smaller device area. The analog MLP has

been becoming popular in recent years for the NN-based ma-

chine learning. Several Analog MLPs have been implemented

to solve classification problems in the past decade, which

show promising results [6]–[8]. However, the MLP realized

by analog circuits is vulnerable to many factors, such as

offset voltage, noise coupling, impedance, limited scalability

and process-introduced variation [9]. The accumulated effect

will degrade the feasibility of the MLP circuit. Moreover,

most of the implementations adopt complicated circuits for

the activation function which are difficult to train, the weights

are also not easy to control.

Based on an analog perceptron with DAC-based multiplier,

we implement an MLP circuit with ReLU activation in a

0.6μm CMOS technology process with a supply voltage of

±2.5V. The circuit utilizes an improved source follower with

a simple structure to approximate the ReLU function greatly.

To improve the reliability of the whole circuit so that the DC

biasing of the ReLU circuit is adjustable, one adder and an

inverter are inserted after each perceptron. In addition, we

present the impedance issue in the cascading of neurons in

MLP, which is critical to the feasibility of the whole circuit.

Finally, the simulation results in an experimental case of

our analog MLP circuit, shows that the circuit has a power

dissipation of 200mW, a wide range of working frequency

from 0 to 1MHz, and a moderate performance in terms of the

error ratio.

The rest of the paper is organized as follows. Section II

briefly describes analog perceptron circuit with DAC-based

multiplier. Section III presents an MLP circuit for the machin-

ing learning and introduces some aspects critical to the success

of the implementation. Section IV explains the simulation

of the whole circuit and summarizes the simulation results.

Finally, Section V concludes this work.
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Fig. 1. Top-level schematic of our MLP circuit

II. ANALOG PERCEPTRON CIRCUIT WITH DAC-BASED

MULTIPLIER

Aiming at an analog front-end of a sensor node, Ishiguchi et

al. propose an analog perceptron circuit with DAC-based mul-

tiplier in the work [3] to improve the sensing information. The

analog perceptron circuit employs the mechanism of neural

network-based machine learning, the model of which can be

represented as: fout(t) = w1·f1(t)+w2·f2(t)+· · ·+wn·fn(t).
Where f1(t), · · · , fn(t) are the inputs, each of which is

multiplied by a weight w1, · · · , wn, all weighted inputs are

summed at the output fout(t). All the weights are controlled

only by digital codes. Two DACs are used in a DAC-based

multiplier, a DAC is inserted at the input of the negative

feedback circuit, while the other is at the loop of the feedback.

DACs serve as two variable resistors and changing of the

DAC output current looks as if the resistance value were

to change. The input-output/Vin − Vout relationship of the

multiplier can be represented as: Vout = −X1
X2Vin, where X1

and X2 are the decimal input codes of DAC1 and DAC2,

respectively. For a three-input perceptron circuit, the input-

output/Vin−Vout relationship of the circuit can be represented

as: Vout = −X1
X4Vin1 − X2

X4Vin2 − X3
X4Vin3, where X1, X2, X3

are the decimal codes of DACs for the input Vin1, Vin2, Vin3,

respectively. While X4 is the decimal code of DAC in the

negative feedback of OPAMP. Note that in our implementation

of an MLP circuit, a non-inverting adder is used to collect

the outputs of multipliers rather than an OPAMP in order

to reduce the interaction. An OPAMP-based inverter is also

used to invert the output of the perceptron circuit, so that

each output of the node is positive and easy to verify the

correctness.

III. MULTI-LAYER PERCEPTRON BASED CIRCUIT

In this section, a multi-layer perceptron circuit with a

non-linear activation function is introduced. Once a neural

network model is trained by the back-propagation algorithm

in the software, the weight value of each connection can

be determined. As long as ensuring the configuration and

weights are consistent with the software, our circuit can be

used to recover a learning model on hardware. In this paper,

we primarily focus on the implementation of the circuit, the

software part is beyond the scope of this paper.
A block diagram of the MLP circuit is shown in the Fig. 1.

This network is constituted by three layers: an input layer with

two neurons, a hidden layer with three neurons, and an output

layer with four neurons. The neuron number is annotated

in the corresponding module, the net name is annotated as

well and the connection relationship is indicated by its name

directly. Each neuron in hidden and output layers is followed

by a ReLU module, which is used to approximate the ReLU

function in the neural network. The function of a perceptron

and ReLU circuit can be represented by a mathematical model,

as shown in the dotted box of the figure. Where wij denotes

the weight for the connection of two neurons. The subscript i

represents the sequence number of the starting neuron, and j

represents that of the target neuron. For example, the weights

of the sixth neuron are w36, w46 and w56, respectively. xi

denotes the input of the j-th neuron, and yj denotes the

output of the j-th neuron. The perceptron module is comprised

of three or two DAC-based multipliers and other function

circuits. The ReLU module is comprised of an improved

source follower and an OPAMP-based buffer. The weight of

each perceptron module is controlled by digital codes.

A. An Improved Source Follower
ReLU is the most commonly used activation function in

neural networks, especially in convolutional neural networks

(CNNs). Mathematically, it is defined as: y = max(0, x), x ∈
R. Inspired by the input-output characteristic curve of a source

follower, we attempt to implement a ReLU circuit by it

since the curve is approximately similar to ReLU function.

However, the output voltage of a typical source follower(see

Fig. 2(a)) always has a significant difference with the input

voltage, which reduces the accuracy of the neural network

model and prediction correctness. Therefore, we modify the
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Fig. 2. Circuits and simulation for the ReLU activation function

circuit and its configuration is shown in Fig. 2(b). The value

of each component is annotated as well. When a proper DC

operating voltage is applied at the input, the NMOS transistor

works in a saturation condition. The DC operating voltage

applied influences not only the drain current of M2, but also

the linearity of input-output characteristic. Hence, a proper

DC biasing is important to approximate the ReLU function.

In the preceding stage of ReLU circuit, we have a non-

inverting adder that incorporates a DC biasing, which can

adjust the DC operating point of ReLU circuit. The input-

output characteristic of the above two circuits is shown in

the Fig. 2 (c). An improved source follower (b) can better

approximate the ReLU function, as the difference between the

input and output is smaller.

Note that both the gain of circuits in figure is not larger

than 1, even if the R1 and R3 are close to infinite. When

R3 reaches a certain value, increasing the value of R3 only

contributes a little to the slope of the curve. Capacitor C1 is

used to filter out DC voltage so as not to influence the DC

operating point of the next stage. Besides, the voltage loss on

ReLU circuit is inevitable as output cannot perfectly follow

the input. We also note that when the input voltage for (b)

is beyond 4.7V, the output voltage does not increase, that’s
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Fig. 3. Adders inside our perceptron module

because as the gate-source voltage increases, the number of

carriers in the transistor channel no longer increases, and the

drain current tends to be constant.

B. Adders for Improving Reliability

Inside the perceptron module of the top-level schematic,

there are DAC-based multipliers and adders. The circuit shown

in the Fig. 3 is a sub-circuit of a 2-input perceptron, which is

constituted by a non-inverting adder and an OPAMP-based

inverter. The port name and the value of all resistors are

annotated in the figure. In our implementation of the MLP

circuit, V0 connects to ground, VIN1, and VIN2 connect to

the outputs of multipliers, respectively. VBIAS connects to

a biasing generator circuit which provides various biases we

need. It can serve as a bias in the mathematical model of the

neural network. By utilizing the bias, the centering voltage of

the summed signals can be adjusted. Besides, the DC biasing

can be also used to bias the ReLU circuit which follows after

the perceptron, so as to adjust its operating point. Note that the

bias of each ReLU can be different and independent, therefore

the reliability and flexibility of MLP is improved.

The OPAMP-based inverter is used to invert the phase

of the summed signals. As a perceptron circuit with DAC-

based multiplier always generates an inverting signal, such

as V out = (−X1/X2)V in1 + (−X3/X4)V in2, here, X
represents the decimal value of the digital codes of DAC. It’s

hard to verify the output of each neuron in this form, especially

in a complicated neural network with multiple hidden layers.

Therefore, we use an OPAMP-based inverter to achieve that

the output of neurons always has the same phase with the

input, so that the calculation at each neuron becomes easy.

Note that the positive port of the OPAMP-based inverter

connects to VBIAS rather than the ground. That’s because

the non-inverting adder has a DC component at its output.

C. Impedance Issue of Cascading Neurons

Since the output impedance of the ReLU circuit is extremely

high, therefore it has a poor ability to drive its succeeding

stage. The high output impedance of the ReLU circuit results

in not working when combining two neurons. Consequently,

it’s critical to deal with the impedance issue when cascading

neurons. In our implementation of an MLP circuit, we measure

the output impedance of a ReLU circuit following a 2-input



1.25
1.0
0.75
0.5
0.25
0.0

-0.25
100.0
80.0
60.0
40.0
20.0
0.0

100.0
80.0
60.0
40.0
20.0
0.0
80.0
60.0
40.0
20.0
700.0
600.0
500.0
400.0
300.0
200.0
100.0
0.0

-100.0
10− 10− 10− 10 10 10 10 10 10 10 10 10 10

Freq.(Hz)

Im
pe
.(T
Ω
)

Im
pe
.(K
Ω
)

Im
pe
.(K
Ω
)

Im
pe
.(K
Ω
)

Im
pe
.(Ω

)

Zout1
Zin1

Zin2
Zin3

Zout215.9155M

34.1569K

18.3228K

6.125043m

22.9538K

(a)

10 3 10 2 10 1 100 101 102 103 104 105 106 107 108 109
Freq.(Hz)

3.5

3.0

2.5

2.0

1.0

0.5

0.0

K(ecnadep
mI tuptu

O
)

1.5

-0.5

OP1-based
OP2-based

OP3-based
INV-based

2.6985K

1.81579K

335.143

333.859m

(b)

Fig. 4. Impedance issue of cascading. (a) Comparasion between the output
impedance and the input impedance. (b) The output impedance of the circuit
after inserting buffers.

perceptron, and the input impedance of a 3-input perceptron

which follows the ReLU circuit. As shown in the graphs of Fig.

4(a), Zout1 represents the output impedance of a ReLU circuit;

Zin1, Zin2, and Zin3 represent the input impedance of three

inputs, respectively; Zout2 represents the output impedance

of ReLU circuit inserting an OPAMP-based buffer after it.

When the circuit works at 1KHz, before inserting a buffer,

the output impedance is very high that reaches 15.9MΩ,

whereas the input impedance of three inputs is 34.1KΩ,

22.9KΩ, and 18.3KΩ, respectively. It’s far smaller than the

output impedance of the ReLU circuit, therefore ReLU cannot

drive the next stage if without dealing with impedance issue.

In dealing with the impedance issue of cascading circuits,

inserting a buffer between two stages is an effective way. As

seen in the graph Zout2, in our implementation of the circuit,

the output impedance is significantly reduced after inserting a

buffer, which has only 6.1mΩ and load-carrying capacity has

been improved.

However, it’s not any buffer can alleviate the issue of high

output impedance. We need to design the output impedance of

the buffer carefully. Fig. 4(b) shows the measuring results of

the output impedance of four buffers. There are OP1-based,

OP2-based, OP3-based and INV-based buffers. When working

at 1KHz, their output impedance is 335.1Ω, 2.7KΩ, 333.8mΩ

and 1.8KΩ, respectively. Finally, we choose OP3-based buffer

as it has the lowest output impedance. Besides, it has a stable

frequency characteristic ranging from 0-1MHz. However, the

other three buffers cannot enable the MLP circuit to work even

inserting them after a ReLU circuit. Note that ReLU circuit

inserting with an OP3-based buffer is packed inside the ReLU

module in the top-level schematic.

Furthermore, from both figures of the measuring results, it

shows that impedance of the circuit is relevant to the working

frequency, as the impedance value of the circuit is changed

dramatically when the frequency is beyond 1MHz. It implies

that our MLP circuit is constrained by the working frequency.

IV. EXPERIMENTAL CASE

A. Simulation Explanation

After each module of the MLP circuit is tuned well, we

conduct a system simulation for the top-level schematic. Once

a learning model is obtained and each weight of connection

is determined, the digital circuit sets the weight of the MLP

circuit to a corresponding value consistent with the software.

Subsequently, two test signals are applied to the inputs.

Each measuring net of the MLP circuit is plotted and the

amplitude of the waveform is recorded. Since the result of

each measuring net is a simple weighted sum, the measuring

result of simulation can be used to verify the behavior of a

learning model on hardware easily, the correctness and the

feasibility of our MLP circuit can be demonstrated as well.

In our system simulation, we apply two same signals with

the amplitude of 1mV and the frequency of 1MHz at inputs,

and measure the points of interest on the nets of the top-

level schematic. As seen in the Fig. 5, we obtain five sets

of graphs, there are corresponding to the measuring nets of

inputs(see Fig. 5(a)), neuron outputs of the hidden layer(see

Fig. 5(b)), ReLU outputs of the hidden layer(see Fig. 5(c)),

neuron outputs of the output layer(see Fig. 5(d)), and ReLU

outputs of the output layer(see Fig. 5(e)), respectively. The

legend of each set of graphs is directly corresponding to

the net name on the top-level schematic. The amplitude of

each graph is annotated in the figure and recorded in a table

in the after-mentioned subsection. As seen from the figure,

each measuring net has sinusoid outputs, which implies that

our MLP circuit can work. In the following subsection, we

introduce the performance of our circuit. When comparing the

fig. (c) to the fig. (b), and the fig. (e) to the fig. (d), we find

that the offset of the outputs is eliminated, this is because the

capacitor following after the improved source follower filters

out the offset.

B. Summary and Discussion of MLP Circuit

The specifications and weights of our MLP circuit are

summarized in Table I. Our entire circuit is designed in a

0.6μm CMOS technology process with a supply voltage of

±2.5V. The working frequency of our circuit ranges from

0 to 1MHz, which can satisfy the most of applications.

In the implementations of the MLP circuit, the interaction

of neurons is complicated, such as the impedance issue in
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Fig. 5. Simulation results for the top-level schematic

cascading, and the unit-gain frequency of OPAMP, both can

influence the working frequency of the entire circuit. In terms

of power dissipation, it shows a moderate performance with

a power dissipation of 200mV, as we adopt not an advanced

technology process considering the cost. However, it’s still far

smaller than most of FPGA(field-programmable gate arrays)-

or GPU(graphics processing units)-based implementations.

Based on our experience to implement layout for a perceptron

in a 0.6μm PHENITEC technology, the expected area of the

MLP circuit is approximately 1.69mm2. With respect to the

weight value, we list them in the form of two columns by

referring to the top-level schematic, they are corresponding to

the weight value of neurons in the hidden layer, and neurons

in the output layer, respectively. The weight is set to the

value consistent with the software by configuring the digital

codes of each perceptron. For example, the 6th neuron in our

MLP circuit has weights of w36=3, w46=0.6, and w56=0.4, the

subscript 3, 4, 5, represent the starting points, the third, the

4th, the 5th neuron, respectively. The subscript 6 represents the

target point, the 6th neuron. Similarly, the other weights follow

the same rule. In this experiment, all of biases for neurons are

set to 0 for the simplicity of demonstration. However, we can

insert an non-inverting adder at the final output of the MLP

circuit, adding the amount generated by the weights. Since the

bias in each neuron is a constant in the neural network model,

the total amount generated by the network is also a constant.

Table II shows the amplitude of the measuring nets, their

corresponding mathematical calculation, and the error ratio.



TABLE I
THE SPECIFICATIONS AND WEIGHTS OF OUR MLP CIRCUIT.

Technology process 0.6μm CMOS
Supply voltage ±2.5V

Working frequency 0-1MHz
Power dissipation 200mW

Expected area 1.69mm2

Weight value

w13=2, w23=1 w36=3, w46=0.6, w56=0.4
w14=5, w24=10 w37=2, w47=0.25, w57=0.75
w15=3, w25=2 w38=3, w48=1, w58=2

n/a w39=0.83, w49=0.16, w59=1.16

We omit some measuring nets and only list the values at

the outputs of the ReLU circuits, as the omitted measuring

nets are not final outputs of neurons and also have the offset.

In the following, we give an example of the mathematical

calculation for a measuring net. For the net N3ReLU out at

the output of the ReLU circuit after the third neuron, which has

weights of w13=2, w23=1, thus, the output is as: y3 = x1·w13+

x2·w23. Since the amplitudes of x1 and x2 are both 1mV in

our implementation, the amplitude of y3 is 3mV. Ideally, the

amplitude of y3 is the final result for the net N3ReLU out if

the circuit can realize the ReLU function perfectly. In the same

way, we can calculate that the output of the net N4ReLU out

is 15mV and that of the net N5ReLU out is 5mV. After all

of the outputs in the hidden layer is obtained, using them as

inputs of next layer. The output of neuron in the output layer is

equal to that its inputs are multiplied by corresponding weights

and are then summed up, the output for the 6th neuron is as:

y6= x1·w36+ x2·w46+ x3·w56. Here x1, x2, and x3 denote

the inputs of the 6th neuron, the amplitude of y6 is 20mV,

the final result for the net VOUT1 is also 20mV under the

assumption of the ideal circuit. Similarly, the outputs for the

nets VOUT1, VOUT2, and VOUT3, are 13.5mV, 34mV, and

10.83mV, respectively. Note that all the outputs of neurons

are positive, as the OPAMP-based inverter inside perceptron

module inverts the summed signal. The amplitude for each

measuring net is listed in Table 2, and the error ratio is given

accordingly. The error ratio is calculated by the difference

between the mathematical calculation and simulation result

divided by the mathematical calculation. Our MLP circuit

shows a moderate performance in terms of the error ratio. On

the one hand, the ideal ReLU function and the approximated

function generated by circuit have an difference which is

inevitable. Besides, the interaction between the analog circuits

is complicated especially in a highly-interconnected neural

network, designers need to trade off in the consideration of

many aspects, such as noise, offset, impedance, the input and

output range.

When compared to most of VLSI implementations based

on FPGAs or GPUs with very high power dissipation, this

work demonstrates the feasibility and effectiveness of our

MLP circuit implemented on an analog CMOS circuit.

V. CONCLUSION

Based on an analog perceptron circuit with DAC-based

multiplier, this paper presents an MLP circuit with ReLU

TABLE II
EVALUATION TO OUR MLP CIRCUIT.

Measuring net Mathematical Simulation Error
calculation (mV) result (mV) ratio (%)

N3ReLU out 3 2.72 9.3
N4ReLU out 15 13.51 9.9
N5ReLU out 5 4.54 9.2

VOUT1 20 17.81 11.0
VOUT2 13.5 11.79 12.7
VOUT3 34 30.79 9.4
VOUT4 10.83 9.45 12.7

activation for the neural network. Our MLP circuit is imple-

mented in a 0.6μm CMOS technology process with a supply

voltage of ±2.5V. We propose an improved source follower to

greatly approximate the ReLU activation function. One adder

and an inverter are adopted to improve the reliability of the

whole circuit, so that the DC biasing of the ReLU circuit is

adjustable. In addition, the impedance issue in the cascading of

neurons in MLP is presented, which is critical to the feasibility

of the whole circuit. Finally, an experimental case is conducted

on our MLP circuit, the simulation results show that the circuit

has a power dissipation of 200mW, a wide range of working

frequency from 0 to 1MHz, and a moderate performance in

terms of the error ratio. It demonstrates the feasibility of our

MLP circuit, and shows a promising function of a learning

model implemented on an analog CMOS circuit. Our future

works are to improve the DAC of the multiplier to expand the

range of the weight value, and reduce the interaction between

neurons to improve correctness.

REFERENCES

[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S.
Nasrin, M. Hasan, B. C. Van Essen, A. A. Awwal, and V. K. Asari,
“A state-of-the-art survey on deep learning theory and architectures,”
Electronics, vol. 8, no. 3, p. 292, 2019.
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