
Issue-Slot Based Predication Encoding Technique
for VLIW Processors

Lukas Gerlach, Fabian Stuckmann, Holger Blume, and Guillermo Payá-Vayá
Institute of Microelectronic Systems

Leibniz Universität Hannover
Cluster of Excellence Hearing4all

Hannover, Germany
Email: {gerlach, stuckmann, blume, guipava}@ims.uni-hannover.de

Abstract—Predication is a well-known alternative to condi-
tional branching. However, the implementation of predication is
costly in terms of extending the instruction set of the processor
architecture. In this paper, a predication encoding technique for
VLIW processors is proposed. Instead of using additional bits in
the instruction encoding, the assigned issue-slot of a conditionally
executed instruction encodes the associated predicate register.
The number of addressable predicate registers scales with the
number of issue-slots. All predicate registers have only one read
and write port and can be accessed in parallel. Compared to
the related work, no additional instruction encoding bits for
selecting a predicate register are required and the processor core
area increases only by about 1% per predicate register set. With
the proposed predication technique, the processing performance
increases by up to 4.5% when using two instead of one predicate
register for a digital filter case study with floating-point emulation
operations. A second case study shows, that conditional execution
with two predicate register in combination with loop unrolling
and operation merging almost doubles the achieved parallel
instructions per cycle for a bit-reversal permutation algorithm.

Index Terms—predication, conditional execution, VLIW

I. INTRODUCTION

Very long instruction word (VLIW) processors are com-
monly used for embedded high performance and low-power
multimedia applications [1]–[8]. VLIW processors are de-
signed for instruction level parallelism (ILP), executing multi-
ple instructions with a fixed order in parallel. Since the order of
the instructions is determined by the compiler, the hardware is
less complex compared to superscalar architectures. Therefore,
to fully utilize hardware resources, ILP compiler optimizations
are required [1], [8].

One limitation for further compiler optimizations are branch
instructions, which cause smaller basic blocks (straight line
microcodes (SLMs)) in the code, restricting the scope of
ILP optimizations [8]. These branch instructions, which are
required for the control flow of an application, are expensive
in terms of processing performance [7]. The condition of a
branch cannot be evaluated at the beginning of the pipeline.
Hence, the successive instructions already fetched and de-
coded must be discarded, while the pipeline is flushed, or

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy — EXC
2177/1 — Project ID 390895286.

are executed whether or not the conditional branch is taken.
One alternative to conditional branches is predication [2], [8].
Predication is the conditional execution or guarded execution
of instructions. The instructions of both instruction-sequences
of the conditional code are executed, but only the instructions
of one of the sequences change the state of the processor and
memories, depending on the value (condition flag) stored in a
predication or guard register [8]. The remaining instructions
act as no operation (NOP) instructions. Branches may be
replaced by conditionally executed instructions during the if -
conversion [2], [3], [9]. The control dependencies are con-
verted to data dependencies by converting multiple regions of
a control flow graph into a basic block, composed of predicated
(conditional) code [1].

However, the application of a predication technique requires
an extension of the instruction set architecture (ISA) of the
processor [5], [8]. Additional instruction encoding bits are
needed in order to address one of the predicate register. But
adding for example 6 instruction encoding bits to address 64
predicate register is prohibitively too expensive for embedded
processors [8]. Studies for related embedded processors [10],
[11] show the importance of the instruction memory size on
power consumption. As shown in [10], the memory subsystem
of ARM processor [12] accounts for 65.2% of the total
energy. For multi-processor ARM systems, this proportion is
45.9%. The instruction memory cache alone accounts for
20.6% in this system. The ARM processors with the reduced
16 bit Thumb instruction set are more energy efficient com-
pared to the 32 bit ARM processors, however the processing
performance is lower [10]. The instruction caches of the
TMS320C6000 VLIW processor family [13] account for up
to 30% of the total processor power [14], [15]. Besides the
power consumption, the area requirements of the instruction
memory are crucial for embedded processors. Each additional
instruction bit increases the required SRAM area linearly, as
depicted in Fig. 1 for a 40 nm ASIC technology.

Additionally, the number of read and write ports of the pred-
icate register file and the instruction fetch and decode logic are
important for the resulting hardware complexity [5], [11]. The
instruction fetch and decode logic of a DSP can consume up
to 40% of the total processor logic [11], [16]. Therefore, the

20 30 40 50 60

60

80

100

Number of bits per word

SR
A

M
ar

ea
in

%

Fig. 1. Area of SRAM macro blocks of a 40nm ASIC technology with
different number of bits per word. The area of the SRAM macro block with
64bits per word is used as a reference.

goal is to reduce the overhead caused by implementing the
predication technique in these processors [5].

In this paper, a new scalable and low overhead predication
technique for VLIW processors is proposed. Instead of en-
coding the address of the predicate registers with additional
instruction encoding bits, each issue-slot of the VLIW archi-
tecture includes a dedicated predicate register. With the help
of compiler optimizations, which are also presented in this
paper, instructions are scheduled on the issue-slot with the
corresponding predicate register. This technique scales with
the number of issue-slots, requires no additional instruction
encoding bits, and therefore decreases the hardware overhead
for predication.

This paper is organized as follows. The related predication
techniques are presented in Section II. The VLIW architecture
is described in Section III and the details of the proposed
predication technique are given in Section IV. The case
studies in Section V and Section VI show the application
and evaluation of the technique. The paper is concluded in
Section VII.

II. RELATED WORK

An overview of the related predication techniques is given in
Table I. The number of predicate registers and the required in-
struction encoding bits to address these registers are compared.
The number of predicate registers determines the maximum
number of conditional statements, which can be processed
in parallel. The cause for these conditional statements are
parallel or nested if-else constructs. A comparatively high
number of up to 64 predicate registers is used by [2], [17]–
[19]. Consequently, these architectures require most instruction
encoding bits to address one of the predicate registers. The
number of encoding bits is reduced in [19], by splitting
the registers into two sets. A special instruction is used to
switch between the two register sets. The ARMv7-A [12]
architecture includes one application program status register
(APSR), which holds four different conditions: negative, zero,
carry and overflow. In order to select these conditions 4 bits
are required for every instruction [8]. In [5], [13], [20] the
predication technique of the TMS320C6X processor family is
described. The condition flags are stored in a restricted number
of registers of the general purpose register file. The limited
number of six predicates for the TMS320C6X processor family
results in a limited control-flow nesting [8]. As every if-then-
else statement requires two predicates, only two levels of

TABLE I
COMPARISON OF RELATED PREDICATION TECHNIQUES. THE REQUIRED

INSTRUCTION ENCODING BITS ARE THOSE THAT ADDRESS ONE
PREDICATE REGISTER.

Required
Number of instruction
predicate encoding

Architecture registers bits

Itanium IA-64 processor [17], [18] 64 6 bits
Generic ILP processor [2] 32 5 bits

ARMv7-A [12] 1 4 bits
TMS320C64x/C67x VLIW [13], [20] 5 3 bits

PLX [19] 128* 3 bits
HP VLIW ST231 ISA [5] 1 1 bit

KAVUAKA [this work] 16** none
* (16 sets of 8) ** (8 per issue-slot, one for each SIMD subword)

control-flow nesting are possible. The number of read and
write ports of the general purpose processor register file needs
to be increased and the access and usage patterns might
influence overall performance [21]. However, no dedicated
predicate register file is required and the predicate registers can
be used otherwise if they are not needed. The authors of [5]
propose to reduce the overhead of predication by restricting
the number of predicate registers to one. Consequently, only
one additional read port for the predicates is required. Four
ports were previously required by the four issue-slots of the
VLIW architecture to read four predicate registers per cycle.
Instead of 3 bits for the predicate operand, only 1 bit is
required. Nested and parallel if-else statements can not be fully
predicated with only one predicate register [5].

In this paper, a predication technique is presented, which
does not require any instruction bits to encode the predicate
registers. The predicate registers are encoded by scheduling
the conditional instructions on different issue-slots. The in-
struction bits saved compared to the related architectures are
summarized in Table I. Due to the issue-slot based predicate
encoding, the proposed technique decreases the required in-
struction memory size, power consumption and the complexity
of the instruction decoding stage compared to the related work.
A compiler extension for this encoding technique is presented,
which handles the predicate register allocation automatically,
without the need to manually encode the predicate register
within the instructions.

III. GENERIC VLIW PROCESSOR ARCHITECTURE

The proposed predication technique is evaluated with a
VLIW processor called KAVUAKA [22], which is shown in
Fig. 2. KAVUAKA is an application-specific instruction-set
processor (ASIP). The architecture is based on the Moai4k2
architecture, a scalable and configurable ASIP architecture for
multimedia applications [23]. KAVUAKA supports instruction
and data level parallelism with very long instruction words
(VLIWs) and single instruction, multiple data (SIMD). The
architecture was implemented with the hardware description
language VHDL, so that the processor configuration can be

PC

(IF - DE - RA)

ALU1

ALU2

FU1

FU2

Pipeline registers

Write back

FU3

CMAC

Execution - Write back
(EX - WB)

Memory
RegisterInstruction

Instruction Fetch - Instruction Decode - Register Access

Decoder

Issue 0
Instruction

Partitioned

paths

32

(64 bit)
Registers

V1

File

32

(64 bit)
Registers

V0 MV1

MV2

Decoder

Issue 1
Instruction

X2-Mode

X2-Mode

Fig. 2. KAVUAKA application-specific instruction-set processor (ASIP) ar-
chitecture. A vector unit with two pipeline stages, two instruction decoders,
a partitioned register file and several execution units is shown.

customized by a set of parameters, such as the number of
predicate registers.

Fig. 2 shows a configuration consisting of one vector unit
with two issue-slots, labeled Issue 0 and Issue 1. Two 32-
bit wide micro-operations (MOs) are executed in parallel,
which, according to the VLIW philosophy, are combined into
a 64-bit wide instruction word called a micro-instruction (MI).
Two micro-operations (MOs) of the same type, i.e. with the
same instruction encoding, may be merged into one. These
merged operations, called X2-operations, use two identical
functional units of the execution (EX) stage to process twice
the number of input values stored in consecutive register pairs,
thereby doubling the number of parallel executed operations.
This kind operation merging technique is introduced in [24]
as the X2-mode. The structure of the vector unit is based
on reduced instruction-set computer (RISC) principles, where
every instruction takes only one cycle to execute. The number
of pipeline stages is two.

The processor is programmed with assembly language that
maps human-readable instructions directly to micro-operations
defined in the instruction set architecture (ISA). A scheduler
translates the assembly code into micro-instructions, taking
into account control and data dependencies as well as the
parameterized processor configuration. It uses evolutionary
algorithms for scheduling and register allocation for optimiza-
tions [25].

IV. PROPOSED ISSUE-SLOT BASED PREDICATION
TECHNIQUE

In this section, the hardware architecture (Section IV-A) and
the predicate register allocation (Section IV-B) are described.

FU

Pipeline

Execution Stage

Issue-Slot 0

Issue-Slot 1

predicate 0

Pipeline

predicate 1

FU

Predicate register
OCNZ OCNZ . . . OCNZ OCNZ
SW #7 SW #6 . . . SW #1 SW #0

Predicate register content: flags (32 bits) with 4
conditions per SIMD subword (SW): overflow
(O), carry (C), negative (N) and zero (Z)

Fig. 3. One dedicated predicate register is part of each issue-slot. Each
functional unit (FU) reads the condition flags for each subword from the
predicate register of the same issue-slot.

A. Hardware Architecture

A new predication technique is presented, which exploits
the issue-slot based processing of VLIW processors. The
architecture is depicted in Fig. 3. A conditional instruction,
which is defined by setting one instruction encoding bit to ’1’,
receives or sets the condition flags of one predicate register.
Instead of selecting a predicate register using additional in-
struction encoding bits, the predicate register is selected by the
issue-slot, on which the conditional instruction is scheduled.
Each issue-slot of the VLIW processor contains one dedicated
predicate register. The predicate register is selected with the
issue-slot, on which the instruction has been scheduled. No
additional bits for addressing the predicate register are required
in the instruction encoding. Every conditional instruction,
which reads or writes to same predicate register, is scheduled
on the same issue-slot. This technique requires that the issue-
slots of the VLIW architecture are identical/symmetric in
terms of functional and data movement units (FUs), so that
the instruction scheduler can switch the instructions between
the slots without constraints.

These predicate registers contain four condition flags (over-
flow (O), carry (C), negative (N) and zero (Z)) for each
subword of one SIMD data word, as shown in Fig. 3 and
proposed by [8], [21]. On the one hand, this format can be used
to process conditional SIMD instructions on subword-level,
with up to 8 subwords in parallel depending on the condition
flags stored in the corresponding position in the predicate
registers. On the other hand, each single subword with four
condition flags can be used for nested if-else statements. This
use case assumes that each subword holding the conditions
can be selected and used for one of the conditional if-else

Sequential assembler code with two conditions
1 SUBCS_64 V0R0, V0R1, V1R2
2 ADDCR_64 V0R3, V0R4, V1R5
3
4 SUBCS_64 V0R6, V0R7, V1R8
5 ADDCR_64 V0R9, V0R10, V1R1

Corresponding data dependency graph (DDG)

(line 4)
SUBCS 64

(line 2)
ADDCR 64

(line 5)
ADDCR 64

(line 1)
SUBCS 64

Scheduled code on two issue-slots
Issue-Slot 0 Issue-Slot 1

1 SUBCS_64 V0R6 V0R7 V1R8; SUBCS_64 V0R0 V0R1 V1R2
2 ADDCR_64 V0R9 V0R10 V1R1; ADDCR_64 V0R3 V0R4 V1R5

Fig. 4. Exemplary assembler code with two independent conditions. The
corresponding DDG representing the condition flag data dependency is
depicted. The condition set (CS) and condition read (CR) instructions are
scheduled on two issue-slots in parallel, using a separate predicate register.

statements. The total number of predicates is therefore 16,
stored in 2 predicate registers with 8 subwords holding 4
condition flags each.

The number of predicates scales with the number of issue-
slots and available SIMD subwords of the processor. The
number of read and write ports of the predicate register file
is one. The area overhead for implementing one additional
predicate register per issue-slot with one read and write port
is around 1% of the total core cell area of the KAVUAKA
processor for an application-specific integrated circuit (ASIC)
synthesis with a 40 nm low-power technology [22].

B. Predicate Register Allocation

The issue-slot of conditional instructions is bound to the
issue-slot of the associated predicate register. Therefore, the
predicate register is allocated during instruction scheduling.
The instruction scheduler determines the issue-slot for every
instruction for a given application. The predicate register re-
source dependencies are checked during instruction scheduling
using data dependency graphs (DDGs). The DDGs indicate,
which conditional instructions are interdependent and must
therefore be scheduled before other conditional instructions
can be scheduled. A DDG representation for a code with two
conditionally executed addition (ADD CR) (condition read
(CR)) instructions is shown in Fig. 4. There is no dependency
between these two instructions, because there is no connection
between the subtrees in the DDG. These can be scheduled
in parallel on two issue-slots, using two different predicate
registers set by the subtraction (SUB CS) (condition set (CS))
instructions. The instruction scheduler can optimize the issue-
slot and predicate register allocation for an overall efficient
scheduling [25].

TABLE II
FLOATING-POINT EMULATION MACROS

Floating-Point (FP) Number of Number of
macro conditional operations macro calls

FP ADD 5 (26%) 8
FP SUB 5 (26%) 8
FP MUL 2 (14%) 16

V. CASE STUDY: FLOATING-POINT EMULATION

In this case study, floating-point emulation code with a high
number of conditionally and independently executed opera-
tions, like overflow and sign checks, normalization operations
and bitwise comparisons, is used. The underlying floating-
point emulation library is described in detail in [26]. The
computation of the addition and subtraction operations of
this library is shown in Fig. 5. For a floating-point addition
or subtraction, the exponents of both numbers have to be
adjusted to the same value. Therefore, the absolute difference
of the exponents is computed. Based on the difference, the
significand of the smaller number is shifted right by the
absolute difference of the exponent and the larger exponent is
selected. The significands are then added or subtracted from
each other. After normalization of the significand, the exponent
is updated and the floating-point addition or subtraction is
computed.

The floating-point emulation addition assembler code macro
is shown in Fig. 6. Here the exponents are subtracted from
each other. Depending on the result of this subtraction, one
of the significands is chosen for shifting before adding the
significands. The normalization is performed by counting
leading zeros or ones. The resulting register is then rebuilt
from the updated exponents and the normalized significands.

In the related work presented in [27] and [28], processor
architectures with multiple conditional registers and predicated
execution are selected for floating-point emulation. In this case
study, the processing performance is evaluated based on the
number of available predicate registers.

In this case study, a finite impulse response filter (FIR) and
infinite impulse response filter (IIR) filter with a order of 17
and 7 are computed using floating-point emulation macros.
Table II lists the floating-point point emulation macros and
how often these macros are called during the computation.
These macros contain up to 26% conditional operations. The
number of predicate registers determines how many operations
of these floating-point emulation macros can be scheduled in
parallel.

The required number of processing cycles for computing
one sample with one or two predicate registers is shown in
Table III. When two predicate registers can be accessed in
parallel, the number of required processing cycles decreases
by 4.4% and the instructions per cycle (IPC) increases from
1.82 to 1.91 for the KAVUAKA processor with a maximum
IPC of 2, when no operation merging is used.

significand exponent
eBfB

significand exponent
eAfA

|eA − eB |

fA >> x fB >> x

fA ± fB

normalization eC

max(eA, eB)

significand exponent
eCfC

or

24-bit
8-bit

24-bit 8-bit

24-bit 8-bit

Fig. 5. Optimized floating-point addition for SIMD processors.

1 // **
2 // emulated floating-point addition macro (Q 24.8 format)
3 // **
4 MACRO FP_ADD_32 DST, OP1, OP2
5 // compare exponents
6 PERMREG0_8 xOP1, OP1, OP2 // E0|E0|E2|E2|E1|E1|E3|E3
7 PERMREG0_8 xOP2, OP2, OP1 // E2|E2|E0|E0|E3|E3|E1|E1
8 SUBCS_8s TEMP, xOP1, xOP2 // exponent difference
9 // swap mantissas according to magnitude of exponents

10 // (choose number with smaller exponent)
11 MV TEMP1, OP1
12 MV TEMP4, OP2
13 MVCR_32 TEMP1, OP2
14 MVCR_32 TEMP4, OP1
15 // remove exponent (for significand computation)
16 SRI_32 TEMP5, TEMP1, #8
17 // right shift of secondary significand operand
18 ABSADD_8 TEMP, R_8, TEMP
19 CLIPI_U8 TEMP, TEMP, #0b11111
20 SR_32 TEMP, TEMP4, TEMP
21 // add mantissas
22 ADD_32 TEMP5, TEMP5, TEMP
23 // normalize resulting significand
24 CLX_32 TEMP, TEMP5, TEMP5
25 SMVI V0CONDSEL, #0b0010
26 SLCS_32 TEMP5, TEMP5, TEMP
27 // compute new (resulting) exponent
28 SUB_8s TEMP, R_8, TEMP
29 ADD_8s TEMP, TEMP1, TEMP
30 // recreate original format
31 PERMREG1_8 DST, TEMP5, TEMP
32 MVCR_32 DST, REG_ZERO
33 ENDMACRO

Fig. 6. Assembler code macro for emulating the floating-point addition using
SIMD instructions.

TABLE III
PROCESSING PERFORMANCE IN NUMBER OF CYCLES

one predicate register two predicate register

17-tap FIR 740 707 (−4.4%)
7-tap IIR 300 287 (−4.3%)

VI. CASE STUDY: LOOP UNROLLING AND INSTRUCTION
MERGING

An example for an if -conversion based on partial predi-
cation is shown in Fig. 7. A reference code for bit-reversal
permutation is given, which is required for the radix-2 Cooley-
Tukey FFT algorithms [29]. The if construct is evaluated
within the for loop for every index of the input vector.

Taking the bit-reversal permutation code in Fig. 7 as an
example, the inner loop can be unrolled to increase the size
of the basic block. This loop including the if condition is
implemented on the KAVUAKA processor with conditional
branches or predication with one and two predicate registers.
Different levels of loop unrolling are evaluated, measuring
the dynamic IPC. All ILP compiler optimizations are turned
on, which includes automatic operation merging [25]. The

Reference Matlab code for bit-reversal permutation of the vector x.
The if condition is needed for swapping elements based on their

position (index) within the vector.

1 function x = bit_reversal(x)
2 number_of_elements = length(x);
3 for i = 1:length(x)
4 bit_reversed_index = br_index(i-1, number_of_elements);
5 if(0<(bit_reversed_index-(i-1)))
6 temp = x(bit_reversed_index+1);
7 x(bit_reversed_index+1) = x(i);
8 x(i)=temp;
9 end

10 end
11 end

Conditional branch implementation

1 SUBCS_64 REG_Z,REVERSED_INDEX,INDEX
2 //Conditional branch (greater than)
3 BSR_AND NO_SWAP, #0b1001, #0b10000000
4 //Load two elements
5 MV_64 REG_INDEX_plus_1, (FIR_INPUT_ELEMENT_ADDRESS)
6 MV_64 REG_i, (FIR_OUTPUT_ELEMENT_ADDRESS)
7 //Store elements in memory
8 MV_64 (FIR_INPUT_ELEMENT_ADDRESS), REG_i
9 MV_64 (FIR_OUTPUT_ELEMENT_ADDRESS), REG_INDEX_plus_1

10 :L_NO_SWAP

Scheduled code: conditional branch implementation

1 SUBCS_64 V1R30 V0R2 V0R0; NOP
2 BSR_AND NO_SWAP 0x9 0x80; NOP
3 NOP ; NOP
4 MV_64 V1R30 FIR_IND1 ; NOP
5 MV_64 FIR_IND0 V1R30 ; MV_64 V1R30 FIR_IND0
6 MV_64 FIR_IND1 V1R30 ; NOP
7 :L_NO_SWAP

Conditional execution implementation

1 //Set condition (greater than)
2 SMVI_64 V0CONDSEL, #0b0101
3 SUBCS_64 REG_Z,REVERSED_INDEX,INDEX
4 //Load two elements
5 MV_64 REG_INDEX_plus_1, (FIR_INPUT_ELEMENT_ADDRESS)
6 MV_64 REG_i, (FIR_OUTPUT_ELEMENT_ADDRESS)
7 //Conditionally swap to elements
8 MV_64 REG_TEMP, REG_INDEX_plus_1
9 MVCR_64 REG_INDEX_plus_1, REG_i

10 MVCR_64 REG_i, REG_TEMP
11 //Store elements in memory
12 MV_64 (FIR_INPUT_ELEMENT_ADDRESS), REG_i
13 MV_64 (FIR_OUTPUT_ELEMENT_ADDRESS), REG_INDEX_plus_1

Scheduled code: conditional execution implementation

1 SMVI_64 V0CONDSEL, #0b0101 ; NOP
2 MV_64 V1R0 FIR_IND1 ; SUBCS_64 V1R30 V1R1 V1R30
3 MV_64 V1R1 FIR_IND0 ; NOP
4 MV_64 V1R30 V1R1 ; MVCR_64 V1R1 V1R0
5 MV_64 FIR_IND1 V1R1 ; MVCR_64 V1R0 V1R30
6 MV_64 FIR_IND0 V1R0 ; NOP

Fig. 7. Code example with a conditional if construct. The example is
a bit-reversal permutation of an input vector, which is required for the
Cooley–Tukey FFT algorithm. The two assembler implementations use con-
ditional branches or execution. The scheduled code of the two assembler
implementation is also given.

results are depicted in Fig. 8. The conditional branch (BR)
implementation requires fewer cycles than the predicated ver-
sion (CE1 PR), although the branch requires a branch delay
slot with a NOP instruction. The reason for this is that if-
else statement is unbalanced [30]. Increasing the predicate
registers to two (CE 2PR) does not improve performance,
since only one condition is used per loop iteration. When
the loop unrolling is applied, the size of the of the basic
block and the number conditions, that can be processed in
parallel, is increased. Additionally, more operations can be
merged. The achieved IPC increases from 1.53 (CE 1PR) to
2.88 (CE 2PR 2LU), when using 2 predicate registers, loop
unrolling and operation merging. Loop unrolling and operation
merging are not as effective when using conditional branches

CE
1P

R

CE
2P

R BR

BR
1L

U

BR
2L

U

CE
1P

R
1L

U

CE
2P

R
1L

U

CE
1P

R
2L

U

CE
2P

R
2L

U
0

200

400

600

800

896 896 872 840 824

576 560
480 464

Pr
oc

es
si

ng
cy

cl
es

CE 1PR: cond. execution (1 predicate)
CE 2PR: cond. execution (2 predicates)
BR: cond. branch
BR 1LU: cond. branch (1 × loop unrolled)
BR 2LU: cond. branch (2 × loop unrolled)
CE 1PR 1LU: cond. execution (1 predicate / 1 × loop unrolled)
CE 2PR 1LU: cond. execution (2 predicates / 1 × loop unrolled)
CE 1PR 2LU: cond. execution (1 predicate / 2 × loop unrolled)
CE 2PR 2LU: cond. execution (2 predicates / 2 × loop unrolled)

Fig. 8. Processing performance in number of cycles for the bit-reversal
permutation (see Fig. 7) of 32 elements with conditional branches, predication
with one and two predicate registers with different levels of loop unrolling.
Automatic operation merging is activated.

(BR 1LU, BR 2LU) because the basic blocks are smaller and
prevent further compiler optimizations.

VII. CONCLUSION

This paper presents an issue-slot based predication tech-
nique for VLIW processors, that does not require additional
instruction encoding bits to address a predicate register. The
predicate registers are addressed based on the issue-slot, on
which the conditional instructions are scheduled. Multiple
predicate registers can be accessed simultaneously. The core
area overhead for multiple predicate registers is about 1%.
Only one read and write port is required per register. A
compiler optimization approach is presented, to optimize the
predicate register allocation. Two case studies show a per-
formance increase by about 4% when using 2 instead of 1
predicate register in parallel, reaching almost the maximum
possible IPC.

REFERENCES

[1] P. Faraboschi, J. A. Fisher, and C. Young, “Instruction scheduling for
instruction level parallel processors,” Proceedings of the IEEE, vol. 89,
no. 11, pp. 1638–1659, 2001.

[2] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W.
Hwu, “A comparison of full and partial predicated execution support for
ILP processors,” ACM SIGARCH Computer Architecture News, vol. 23,
no. 2, pp. 138–150, 1995.

[3] B. R. Rau and J. A. Fisher, “Instruction-level parallelism,” 2003.
[4] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger,

S. W. Keckler, and K. S. McKinley, “Dataflow predication,” in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). IEEE, 2006, pp. 89–102.

[5] R. A. Starke, A. Carminati, and R. S. de Oliveira, “Evaluation of a
low overhead predication system for a deterministic VLIW architecture
targeting real-time applications,” Microprocessors and Microsystems,
vol. 49, pp. 1–8, 2017.

[6] D. N. Pnevmatikatos and G. S. Sohi, Guarded execution and branch
prediction in dynamic ILP processors. IEEE Computer Society Press,
1994, vol. 22, no. 2.

[7] C. W. Kesseler, “Compiling for VLIW DSPs,” in Handbook of Signal
Processing Systems. Springer, 2018, ch. 3.

[8] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: a VLIW
approach to architecture, compilers and tools. Elsevier, 2005.

[9] J. Crawford and F. J. Huck, “Next Generation Instruction Set Architec-
ture,” in Microprocessor Forum, 1997.

[10] M. Verma and P. Marwedel, “Memory wall problem,” in Advanced
memory optimization techniques for low-power embedded processors.
Springer, 2007, vol. 1, ch. 1.1.1.

[11] A. Artes, J. L. Ayala, J. Huisken, and F. Catthoor, “Survey of low-energy
techniques for instruction memory organisations in embedded systems,”
Journal of Signal Processing Systems, vol. 70, no. 1, pp. 1–19, 2013.

[12] D. Jaggar and D. Seal, ARM architecture reference manual. Prentice
Hall, 2018.

[13] T. Instruments, “TMS320C67x/C67x+ DSP CPU and Instruction Set
Reference Guide, November 2006,” Literature Number: SPRU733A.

[14] M. Jayapala, F. Barat, P. O. De Beeck, F. Catthoor, G. Deconinck, and
H. Corporaal, “A low energy clustered instruction memory hierarchy for
long instruction word processors,” in International Workshop on Power
and Timing Modeling, Optimization and Simulation. Springer, 2002,
pp. 258–267.

[15] T. Instruments, “TMS320C62x/C67x Power Consumption Summary,”
2004.

[16] R. S. Bajwa, M. Hiraki, H. Kojima, D. J. Gorny, K. Nitta, A. Shridhar,
K. Seki, and K. Sasaki, “Instruction buffering to reduce power in
processors for signal processing,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 5, no. 4, pp. 417–424, Dec 1997.

[17] R. Chen, “The Itanium Processor,” Microsoft, Tech. Rep., 2015.
[18] Intel, Intel Itanium Architecture: Software Developer’s Manual Volume

3: Intel Itanium Instruction Set Reference, Intel.
[19] R. B. Lee and A. M. Fiskiran, “PLX: A fully subword-parallel in-

struction set architecture for fast scalable multimedia processing,” in
Proceedings. IEEE International Conference on Multimedia and Expo,
vol. 2. IEEE, 2002, pp. 117–120.

[20] B. Valentine and O. Sohm, “Optimizing the JPEG2000 binary arithmetic
encoder for VLIW architectures,” in 2004 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, vol. 5. IEEE, 2004,
pp. V–117.

[21] C. J. Hughes, “Single-instruction multiple-data execution,” Synthesis
Lectures on Computer Architecture, vol. 10, no. 1, pp. 1–121, 2015.

[22] L. Gerlach, G. Payá-Vayá, and H. Blume, “KAVUAKA: A Low Power
Application Specific Hearing Aid Processor,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2019, pp. 99–104.

[23] G. Payá-Vayá, “Design and Analysis of a Generic VLIW Processor
for Multimedia Applications,” Ph.D. dissertation, Leibniz Universität
Hannover, 2011.

[24] G. Payá-Vayá, J. Martı́n-Langerwerf, F. Giesemann, H. Blume, and
P. Pirsch, “Instruction Merging to Increase Parallelism in VLIW Archi-
tectures,” in System-on-Chip, 2009. SOC 2009. International Symposium
on. IEEE, 2009, pp. 143–146.

[25] F. Giesemann, L. Gerlach, and G. Payá-Vayá, “Evolutionary Algorithms
for Instruction Scheduling, Operation Merging, and Register Allocation
in VLIW Compilers,” Journal of Signal Processing Systems, 2020.

[26] L. Gerlach, G. Payá-Vayá, and H. Blume, “Efficient Emulation of
Floating-Point Arithmetic on Fixed-Point SIMD Processors,” in Signal
Processing Systems (SiPS), 2016 IEEE International Workshop on.
IEEE, 2016, pp. 254–259.

[27] S. K. Raina, “FLIP: a floating-point library for integer processors,” Ph.D.
dissertation, École Normale Supérieure de Lyon, 2006.

[28] C. Iordache and P. T. P. Tang, “An Overview of Floating-point Support
and Math Library on the Intel/spl reg/XScale/spl trade/architecture,”
in Proceedings 2003 16th IEEE Symposium on Computer Arithmetic.
IEEE, 2003, pp. 122–128.

[29] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of computation,
vol. 19, no. 90, pp. 297–301, 1965.

[30] K. Han, J. Ahn, and K. Choi, “Power-Efficient Predication Techniques
for Acceleration of Control Flow Execution on CGRA,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 10, no. 2,
p. 8, 2013.

