
Implementation and Detection of Modbus Cyberattacks

Panagiotis Radoglou-Grammatikis, Ilias Siniosoglou, Thanasis Liatifis, Anastasios Kourouniadis,
Konstantinos Rompolos and Panagiotis Sarigiannidis

Abstract—Supervisory Control and Data Acquisition (SCADA)
systems play a significant role in Critical Infrastructures (CIs)
since they monitor and control the automation processes of the
industrial equipment. However, SCADA relies on vulnerable
communication protocols without any cybersecurity mechanism,
thereby making it possible to endanger the overall operation of
the CI. In this paper, we focus on the Modbus/TCP protocol,
which is commonly utilised in many CIs and especially in
the electrical grid. In particular, our contribution is twofold.
First, we study and enhance the cyberattacks provided by the
Smod pen-testing tool. Second, we introduce an anomaly-based
Intrusion Detection System (IDS) capable of detecting Denial of
Service (DoS) cyberattacks related to Modbus/TCP. The efficacy
of the proposed IDS is demonstrated by utilising real data
stemming from a hydropower plant. The accuracy and the F1
score of the proposed IDS reach 81% and 77% respectively.

Index Terms—Intrusion Detection System, Modbus, Supervi-
sory Control and Data Acquisition, Smart Grid, Smod

I. INTRODUCTION

In the era of the Internet of Things (IoT), Information and
Communication Technology (ICT) constitutes an integral part
of the Critical Infrastructures (CIs). In particular, focusing
on the energy domain, the conventional electrical grid is
transformed into a new paradigm called Smart Grid (SG),
by providing multiple benefits such as self-monitoring, two-
way communication, self-healing, and distributed generation.
However, SG raises critical cybersecurity hazards due to the
vulnerabilities of ICT and mainly of the insecure communica-
tion protocols, such as Modbus, Profinet, Distributed Network
Protocol (DNP3), and IEC 60870-5-104.

In this paper, we focus on the security of the Modbus/TCP
protocol, which is commonly utilised by the Supervisory Con-
trol and Data Acquisition Systems (SCADA). Modbus/TCP
does not include any authentication or access control mech-
anism, thus allowing potential cyberattackers to perform a
plethora of cyberattacks such as Denial of Service (DoS), Man-
in-the-Middle (MitM), and unauthorised access. In particular,
the contribution of this paper is twofold; first, we investigate
and enhance the various Modbus/TCP cyberattacks supported
by Smod [1]. Smod is the most widely known pen-testing
tool related to Modbus/TCP, aggregating a set of diagnostic
and offensive features [1]. In this paper, we extended Smod

∗This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 787011
(SPEAR).
P. Radoglou Grammatikis, I. Siniosoglou, T. Liatifis, A. Kourouniadis,
K. Rompolos and P. Sarigiannidis are with the Department
of Electrical and Computer Engineering, University of Western
Macedonia, Kozani 50100, Greece - E-Mail: {pradoglou,
psarigiannidis,isiniosoglou, aliatifis, ece01344,
krobolos}@uowm.gr

with new five cyberattacks. Second, we provide an Intrusion
Detection System (IDS) capable of detecting DoS attacks
against Modbus/TCP.

The rest of this paper is organised as follows. Section II
provides relevant works regarding the Modbus/TCP security.
In Section III, we list the various cyberattacks supported by
Smod and describe our extensions. Section IV analyses the
architecture of our IDS, while Section V evaluates its efficacy.
Finally, Section VI concludes this paper.

II. RELATED WORK

Many papers have examined the vulnerabilities of Modbus.
More specifically, in [2], P. Huitsing et al. provided a detailed
theoretical study about the various cyberattacks against the
Modbus protocol. In particular, they classified the attacks
into three categories, namely a) serial only attacks, b) Serial
and TCP attacks, and c) TCP only attacks. In [3], B. Chen
et al. executed and examined the impact of Modbus-related
MiTM and TCP SYN flood attacks against a real testbed.
Similarly, utilising a simulation environment, S. Li et al. in
[4] performed four kinds of cyberattacks related to Modbus in
order to collect appropriate traces that can be used for machine
learning algorithms. Specifically, their dataset includes traces
concerning 1) reconnaissance attacks, 2) response injection,
3) command injection and 4) DoS. Finally, A. Voyiatzis et al.
[5], and S. Bhatia et al. [6] developed a Modbus/TCP fuzzer
and a Modbus flooding attack tool, respectively.

On the other side, there are also several works focusing on
detecting cyberattacks or anomalies against Modbus. In [7], T.
Morris et al. provided a set of rules related to Modbus that can
be used by known signature-based IDS like Snort and Suricata.
Accordingly, in [8] N. Goldenberg and A. Wool presented a
relevant anomaly-based IDS, which relies on a Deterministic
Finite Automaton (DFA). In a similar manner, S. Anton et
al. in [9] utilised and evaluated various machine learning
classification techniques for detecting Modbus attacks. Finally,
in [10], P. Wang et al. provided an IDS for Modbus based on
honeypots’ logs.

III. MODBUS CYBERATTACKS AND SMOD EXTENSION

Table I summarises a set of Modbus/TCP cyberattacks,
which are supported by Smod. Next, the following subsections
analyse our extensions by adding five new Modbus/TCP attack
modules, namely a) Modbus Teardrop Module, b) Flag Flood
Module, c) Port Pool Exhaustion Module, d) Response Delay
Module, and e) Baseline Response Replay Module.



TABLE I: Smod Attacks
No Cyberattack Cyberattack Type Description

1 modbus/dos/arp DoS DoS attack with Address Resolution Protocol (ARP)
poisoning

2 modbus/dos/galilRIO DoS DoS attack against Galil RIO-47100 Programmable Logic
Controller (PLC)

3 modbus/dos/writeAllRegister DoS DoS trying to write all registers
4 modbus/dos/writeSingleCoils DoS DoS trying to write all coils
5 modbus/function/fuzzing Fuzzing Fuzzing modbus functions
6 modbus/function/readCoils Unauthorised Access/Fuzzing Reads a specific of Coils
7 modbus/function/readCoilsException Unauthorised Access/Fuzzing Fuzzing read coils exception function
8 modbus/function/readDiscreteInput Unauthorised Access/Fuzzing Reads the status of specific discrete inputs
9 modbus/function/readDiscreteInputException Unauthorised Access/Fuzzing Fuzzing read discrete inputs exception function
10 modbus/function/readExceptionStatus Unauthorised Access/Fuzzing Fuzzing read exception status function
11 modbus/function/readHoldingRegister Unauthorised Access/Fuzzing Reads a specific amount of holding registers
12 modbus/function/readHoldingRegisterException Unauthorised Access/Fuzzing Fuzzing read holding registers exception function
13 modbus/function/readInputRegister Unauthorised Access/Fuzzing Reads a specific amount of input registers
14 modbus/function/readInputRegisterException Unauthorised Access/Fuzzing Fuzzing read input registers exception function
15 modbus/function/writeSingleCoils Unauthorised Access/Fuzzing Writes either 0 or 1 to a given coil
16 modbus/function/writeSingleRegister Unauthorised Access/Fuzzing Writes a specific value to a single register
17 modbus/scanner/arpWatcher Reconnaissance Attack ARP watcher
18 modbus/scanner/discover Reconnaissance Attack Identifies if the Modbus service is running in a field device
19 modbus/scanner/getfunc Reconnaissance Attack Enumares the function codes supported by a field device
20 modbus/scanner/uid Reconnaissance Attack Enumerates the function codes supported by a field device
21 modbus/sniff/arp MiTM ARP poisoning

A. Modbus Teardrop Module

Teardrop attack [2] is a DoS attack, which intends to crash
the target by transmitting overlapping fragmented packets,
thus severing the communication between the target and the
other devices. In particular, the attacker sends fragmented
Modbus/TCP packets with overlapping or scrambled fragment
offsets in order to violate the fragmentation process. The Mod-
bus payload can consist of either random or specific values.
Algorithm 1 gives more details regarding the implementation
of the attack.

Algorithm 1 Teardrop Attack

1: procedure TEARDROP . The execution of the attack
2: while k < numberOfPackets do
3: p← CreateModbusPacket(fc, targetIP )
4: fragments← Fragment(p, fragmentSize)
5: for fragment ∈ Fragments do
6: send(fragment)

7: k ← k + 1

Algorithm 2 Flag Flood Attack

procedure FLAGFLOOD
while x < numberOfPackets do

p← CreatePacket(IP, TCP )
if Flag == F then

c← connectToTarget(targetIP, port)
c.closeConnection()

else
c.send(p)
attempts← attempts+ 1

x← x+ 1

B. Flag Flood Module

Flag Flood [2] belongs to the DoS category. In particular,
it tries to flood the target by using a plethora of TCP packets
with specific flags (ACK, FIN, SYN, and RST). Algorithm 2
provides the relevant implementation details.

C. Port Pool Exhaustion Module

The Port Pool Exhaustion [2] aims to deplete the available
bandwidth of the target. When this attack module is activated,
a plethora of concurrent threads is generated to connect to the
target Modbus TCP port for a particular time duration, thus
destructing the Modbus communication. Algorithm 3 gives the
corresponding implementation details.

Algorithm 3 Port Pool Exhaustion Attack

procedure PORT POOL EXHAUSTION
while i < numberOfThreads do

c← connectToTarget(targetIP )
attempts← 0
startT ime← getT ime()
if c.Connected() && attempts < 3 then

while elapsedT ime < attackT ime do
c.send(KeepAlive)
elapsedT ime← getT ime()− startT ime

else
c← connectToTarget(targetIP )
attempts← attempts+ 1

i← i+ 1

D. Response Delay Module

The response delay attack [2] belongs to the category of
the replay attacks. It utilises first an ARP poisoning attack in



Network Traffic 

Monitoring 

Module

Modbus Flows 

Extraction Module

DoS Detection 

Module

Sensor

CICFlowmeter

Response 

Module

Server

Modbus Flows

Fig. 1: Modbus/TCP IDS Architecture

Algorithm 4 Baseline Response Replay

procedure BRREPLAY
while x < DurationOfAttack do

sniff(filter, interface, prn = storePkt)
send(packetList)
x← x+ 1

while attacking == True do
poisionTarget()

restoreTarget()

order to insert the attacker between the two communication
points. Thus, the attacker is able to obtain the exchanged
request packets and send the appropriate responses with a
specific delay time. In other words, the response packets
are transmitted only by the attacker with a specific delay.
Such delays can have disastrous consequences in an industrial
environment. The implementation of the attack was based on
iptables and the netfilter queue. Algorithm 5 summarises the
attack’s steps. In particular, it consists of three threads. The
first one sends periodically fake ARP packets. The second
thread waits for a specific amount of time and then forwards
all the packets in the queue. Finally, the main thread receives
all the packets and appends them in the queue.

E. Baseline Response Replay Module

The baseline response replay attack [2] aims at confusing or
even interrupting the communication between two endpoints,
by capturing and replaying the information sent between two
devices. Specifically, the attacker executes an ARP poisoning
attack in order to receive the exchanged traffic. Next, some
of the packets are replayed to the destination. Algorithm 4
provides the implementation steps.

Algorithm 5 Response Delay

procedure RECEIVEPACKETS(packet)
if packet destined for HMI IP then

packets queue.append(packet)
else

packet.accept()

procedure FORWARDPACKETS(delay)
while True do

sleep(delay)
for p ∈ packets queue do

p.accept()

procedure EXPLOIT(HMI IP, RTU IP, queue id, delay)
thread1 ← ARPPoison(HMI IP,RTU IP )
thread2 ← ForwardPackets(delay)
thread1.start()
thread2.start()
nfqueue← NetfilterQueue(queue id)
nfqueue.run()

IV. MODBUS/TCP IDS

Fig. 1 presents the architecture of the proposed Mod-
bus/TCP IDS, which consists of two main components called
a) Sensors and b) Server. Sensors are distributed throughout
the network, while they are responsible for capturing and
parsing the Modbus/TCP network traffic of each subnet. In
particular, a Sensor consists of two modules, namely a)
Network Traffic Monitoring Module and b) Modbus Flows
Extraction Module. On the other hand, Server receives from
the various Sensors the Modbus flows and identifies which
of them are related to a DoS attack. Server includes two
modules: a) DoS Detection Module and b) Response Module.



The following subsections analyse each module.

A. Network Traffic Monitoring Module

The Network Capturing Module is responsible for capturing
periodically the network traffic. To this end, the Scapy library
was utilised. In particular, the various Packet Capture (PCAP)
files are generated based on two criteria: a) when their size
is equal to a specific threshold or b) when a specific amount
of time is equal to a second threshold. These thresholds are
defined based on each use case.

B. Modbus Flows Extraction Module

The Modbus Flows Extraction Module receives the PCAP
files generated by Network Traffic Capturing Module and
is responsible for extracting the corresponding Modbus/TCP
flows using the CICFlowMeter software [11]. These flows are
stored in an Elasticsearch database of Server. CICFlowMeter
generates 83 features for each Modbus flow that are used in
order to detect the DoS attacks.

C. DoS Detection Module

The DoS Detection Module receives from the Elasticsearch
database the Modbus/TCP flows and undertakes to detect
potential DoS attacks by using classification machine learning
models. The efficacy of these models is presented in Section V.
The produced security events are stored in a different index
of the Elasticsearch database of Server.

D. Response Module

The Response Module informs the user about the security
events based on a web-based user interface. To this end,
Kibana of Elastic Stack was used.

V. EVALUATION RESULTS

Table II compares the efficacy of the proposed algorithms
used in order to train the various intrusion detection models.
For this evaluation, a) Accuracy, b) F1 score, c) True Posi-
tive Rate (TPR), and d) Precision were used. These metrics
are defined and described thoroughly in [12]. Regarding the
dataset used for the training and testing process, we combined
real Modbus/TCP data from a power plant in Greece as well
as DoS data of [13]. The overal dataset was divided into two
subsets: a) training dataset (70%) and b) testing dataset (30%).
The scikit-learn Python library was used for the training and
testing process. According to the evaluation results, Adaboost
and Random Forest classifiers give the most efficient results
in terms of Accuracy and F1.

TABLE II: DoS Detection Evaluation Results.
Model Accuracy Precision TPR F1
SVM-Linear 0.645 0.879 0.336 0.487
Random Forest 0.811 0.964 0.647 0.774
Naive Bayes 0.650 0.989 0.304 0.465
KNN 0.667 0.996 0.336 0.503
MLP 0.8017 0.942 0.642 0.764
AdaBoost 0.812 0.964 0.647 0.775

VI. CONCLUSIONS

This paper is focused on the security of the Modbus/TCP
protocol. In particular, first, we investigated and enhanced
the Smod pen-testing tool, by introducing new five attack
modules. Subsequently, we provided an anomaly-based IDS
capable of discriminating DoS attacks related to Modbus/TCP.
The evaluation analysis demonstrates the efficiency of the
proposed IDS since Accuracy and F1 score reach 81% and
77% respectively.

VII. ACKNOWLEDGEMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 787011 (SPEAR).

REFERENCES

[1] J. Luswata, P. Zavarsky, B. Swar, and D. Zvabva, “Analysis of scada
security using penetration testing: A case study on modbus tcp protocol,”
in 2018 29th Biennial Symposium on Communications (BSC), June 2018,
pp. 1–5.

[2] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, vol. 1, pp. 37–44, 12 2008.

[3] B. Chen, N. Pattanaik, A. Goulart, K. L. Butler-Purry, and D. Kundur,
“Implementing attacks for modbus/tcp protocol in a real-time cyber
physical system test bed,” in 2015 IEEE International Workshop Tech-
nical Committee on Communications Quality and Reliability (CQR).
IEEE, 2015, pp. 1–6.

[4] S.-C. Li, Y. Huang, B.-C. Tai, and C.-T. Lin, “Using data mining
methods to detect simulated intrusions on a modbus network,” in 2017
IEEE 7th International Symposium on Cloud and Service Computing
(SC2). IEEE, 2017, pp. 143–148.

[5] A. G. Voyiatzis, K. Katsigiannis, and S. Koubias, “A modbus/tcp
fuzzer for testing internetworked industrial systems,” in 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation (ETFA).
IEEE, 2015, pp. 1–6.

[6] S. Bhatia, N. Kush, C. Djamaludin, A. Akande, and E. Foo, “Practical
modbus flooding attack and detection,” in Proceedings of the Twelfth
Australasian Information Security Conference (AISC 2014)[Conferences
in Research and Practice in Information Technology, Volume 149].
Australian Computer Society, Inc., 2014, pp. 57–65.

[7] T. H. Morris, B. A. Jones, R. B. Vaughn, and Y. S. Dandass, “Deter-
ministic intrusion detection rules for modbus protocols,” in 2013 46th
Hawaii International Conference on System Sciences. IEEE, 2013, pp.
1773–1781.

[8] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for
intrusion detection in scada systems,” international journal of critical
infrastructure protection, vol. 6, no. 2, pp. 63–75, 2013.

[9] S. D. Anton, S. Kanoor, D. Fraunholz, and H. D. Schotten, “Evaluation
of machine learning-based anomaly detection algorithms on an industrial
modbus/tcp data set,” in Proceedings of the 13th International Confer-
ence on Availability, Reliability and Security, 2018, pp. 1–9.

[10] P.-H. Wang, I.-E. Liao, K.-F. Kao, and J.-Y. Huang, “An intrusion detec-
tion method based on log sequence clustering of honeypot for modbus
tcp protocol,” in 2018 IEEE International Conference on Applied System
Invention (ICASI). IEEE, 2018, pp. 255–258.

[11] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features.” in ICISSP,
2017, pp. 253–262.

[12] P. I. Radoglou-Grammatikis and P. G. Sarigiannidis, “Securing the smart
grid: A comprehensive compilation of intrusion detection and prevention
systems,” IEEE Access, vol. 7, pp. 46 595–46 620, 2019.

[13] P. Simoes, “Denial of service attacks: Detecting the frailties of machine
learning algorithms in the classification process,” in Critical Information
Infrastructures Security: 13th International Conference, CRITIS 2018,
Kaunas, Lithuania, September 24-26, 2018, Revised Selected Papers,
vol. 11260. Springer, 2019, p. 230.


