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Abstract—By leveraging the advancements in Information and
Communication Technologies (ICT), Smart Grid (SG) aims to
modernize the traditional electric power grid towards efficient
distribution and reliable management of energy in the electri-
cal domain. The SG Advanced Metering Infrastructure (AMI)
contains numerous smart meters, which are deployed throughout
the distribution grid. However, these smart meters are susceptible
to cyberthreats that aim to disrupt the normal operation of the
SG. Cyberattacks can have various consequences in the smart
grid, such as incorrect customer billing or equipment destruction.
Therefore, these devices should operate on a trusted basis in
order to ensure the availability, confidentiality, and integrity of
the metering data. In this paper, we propose a Markov chain
trust model that determines the Trust Value (TV) for each AMI
device based on its behavior. Finally, numerical computations
were carried out in order to investigate the reaction of the
proposed model to the behavior changes of a device.

Index Terms—Advanced Metering Infrastructure, Cybersecu-
rity, Markov Model, Smart Grid, Trust Model

I. INTRODUCTION

According to the World Energy Outlook Report, the global
energy demand will grow more than 30% by 2040. In addition,
concerns are arising regarding the environmental impact of
conventional power systems. In order to satisfy this grow-
ing demand and address the environmental concerns, radical
changes are required to the current energy generation and
distribution grid. To this end, the Smart Grid (SG) concept has
emerged as a promising solution to address the aforementioned
issues [1]. SG leverages the advancements in Information and
Communication Technologies (ICT) to deliver a novel power
generation and distribution system. SG provides higher energy
efficiency, increased reliability, and seamless integration with
renewable energy sources. In addition, SG enables the energy
stakeholders to gain better insights into the energy market
by collecting consumption information and patterns from the
customers.
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Nevertheless, the integration of ICT to the power grid intro-
duces several security threats. SG is vulnerable to cyberattacks
that can have a negative impact on consumer privacy as well
as the normal operation of the SG. The National Institute of
Standards and Technology (NIST) has defined specific security
requirements for the SG, namely confidentiality, integrity,
authentication, and availability [2].

However, the implementation of effective security mecha-
nisms is challenging due to the low computational capabilities
of the SG devices. To this end, several research works have
been proposed that aim to ensure the security requirements
considering the computational capabilities of the SG devices.

A. Related Work and Contributions

The authors in [3] presented a robust and configurable
trust management toolkit that facilitates the operation of
SG systems in the presence of malfunctioning components.
The toolkit utilizes reputation-based trust over network-flow
algorithms to identify untrusted communication components.

A secure key distribution scheme for SG was presented in
[4]. An identity-based signature method and an identity-based
encryption method are leveraged to develop a novel anony-
mous key distribution scheme for SG. In the proposed scheme,
a SG device can anonymously access services provided by SG
operator using a single private key without the need of a trusted
anchor during authentication.

The work in [5] described an efficient real-time approach
to detect false data injection attacks in SG by exploiting
spatial-temporal correlations between the SG components. The
efficiency of the approach is demonstrated through realistic
simulations based on the US SG.

The authors in [6] presented a lightweight security and
privacy-preserving scheme, based on forecasting the electricity
demand for a group of houses that are located in the same area.
The proposed scheme satisfies the security and privacy require-
ments with low communication and computational overhead.



Alnasser and Sun [7] proposed a fuzzy logic trust-based
model in order to detect untrusted nodes in the SG. The model
calculates the node’s trust based on three variables (i.e., direct,
indirect, and past trust). The authors evaluated the efficiency
of the proposed model using a number of cyberattacks.

The authors in [8] integrated honeypots into the SG network
as decoys to attract attackers. They analyze the interactions
between the attackers and the honeypots in order to derive
optimal strategies for both sides. In addition, the authors
evaluated the proposed scheme in a simulated SG testbed.

A similar approach was presented in [9]. The authors
implement a high interactive honeypot for SG, that is able to
emulate a physical ICS device by replicating realistic traffic
from the real device. The proposed SG honeypot was evaluated
in a realistic demonstration scenario based on a hydropower
plant.

In this work, we utilize Markov chains to model the Trust
Value (TV) as a security metric of a SG device. The notion of
TV is used in various networks, such as peer-to-peer networks
[10], wireless sensor networks [11], Multicast Mobile Ad-hoc
Networks (MANETs) [12], and vehicular networks [13]. The
main contributions of this work are summarized as follows:

• We describe a Markov-based model that can effectively
capture the TV change sequence of a SG device. In
particular, each TV is represented by a single state in a
Markov chain. The states change according to the device
behavior.

• We present six events that affect the TV (i.e., the state
in the Markov chain) of each device. Specifically, three
events correspond to a benign device behavior, while the
other three correspond to malicious device behavior. Each
of the events has a different impact on the TV/state.

• We analyze the proposed Markov model in order to
calculate the probability of the trust state for each SG
device and determine the convergence speed.

II. MARKOV TRUST MODEL FOR AMI

One of the main components of the SG is the Advanced
Metering Infrastructure (AMI). The AMI is a combination of
hardware and software technologies that facilitate the collec-
tion and management of consumer data [14]. Fig. 1 shows
a reference architecture of the AMI. In AMI, multiple smart
meters are deployed in the consumer premises (e.g., houses,
malls, factories, etc.) in order to collect detailed consumption
data. These data are forwarded to a data center for further
processing.

AMI devices are susceptible to numerous cyberattacks. For
example, an attacker can launch Denial of Service (DoS)
attacks against the devices in order to prevent them from
their normal operation. Another example is false data injection
attacks. After compromising a device, the attacker can inject
false data in order to disrupt the operation of the SG or
maliciously increase the consumer billing rate.

The notion of TV is used to measure the trust of each AMI
device. A central entity, located in the data center, monitors
the behavior of the devices and changes the TV accordingly.

Data Center

Smart Meters

Fig. 1. Advanced Metering Infrastructure Architecture

TABLE I
EVENT IMPACT ON THE TV

Event TV Change
Normal connection +1

Abnormal connection -1

Timely polling response +2

Delayed polling response -2

Consumption in the expected range +3

Consumption out of the expected range -3

The term T (i) denotes the TV of the i device that changes
depending on the device behavior. Similarly to the work in
[12], the TV of a device is increased or decreased by 1, 2,
and 3 units, respectively. A summary of these events is shown
in Table I.

Connection: The device should initiate a connection with
the data center by sending a connection request packet. If
multiple connection request packets are sent, the connection is
considered abnormal and the TV is reduced by 1, otherwise,
TV is increased by 1.

Polling: The AMI devices are polled in order to report the
consumption data. If the polled device responds within a time
limit, the TV is increased by 2, otherwise, it is reduced by 2.

Consumption: If the collected consumption data are in
the expected range (e.g., the consumption does not exceed a
threshold or it does not differ too much compared to previous
values), the TV is increased by 3. Otherwise, the TV is
decreased by 3, e.g., in case of device compromise.

The change of TV can be modeled as a Continuous Time
Markov Chain (CTMC) [15]. Fig. 2 shows the state diagram
of the proposed Markov chain model with various arrival and
departure rates. The arrival rates λj,j+k increase the trust state,
while the departure rates µj,j+k decrease the trust state. Index
j, 0 ≤ j ≤ J denotes the state, while index k, 1 ≤ k ≤ 3 is
based on Table I.
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Fig. 2. State diagram of the proposed Markov chain model
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III. NUMERICAL RESULTS

In this section, we present the numerical results of the
proposed model regarding the average TVs of the devices as
well as the state convergence speed of four scenarios. The
system parameters are summarized in Table II. In particular,
the number of AMI devices is 10 in all of the scenarios. In
scenario 1, the number of trust states is 5, while the arrival
and departure rates are exponentially distributed in the range
(5,15). In scenario 2, the number of trust states is 5, while the
arrival and departure rates λ1, µ1 are exponentially distributed
in the range (5,15). The rest of arrival and departure rates,
based on Table I, are calculated as: λ2 = 2λ1, λ3 = 3λ1, µ2 =
2µ1, and µ3 = 3µ1. Finally, scenarios 3 and 4 have 10 states,
while the rest of the parameters are respectively the same with
scenarios 1 and 2.

Fig. 3 shows the average TVs of ten devices after 500
transitions. The black stars indicate the initial TV value of each
device, while the red circles and green squares indicate the
average TVs of each device in scenarios 1 and 2 respectively.
Similarly, the purple star and blue diamonds indicate the
average TV of the devices in scenarios 3 and 4 respectively.
The average TVs of scenarios 2 and 4 are closest to the initial
TVs, followed by the average TVs of scenarios 1 and 3. This
is expected as scenarios 1 and 2 have fewer states compared
to the other two. Overall, it is apparent from both figures, that
if a device has a high/low initial TV (i.e., good/bad behavior),
it will also have a high/low average TV.
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Fig. 4. State Probability Convergence of Scenarios 1 and 2

A comparison between scenarios 1 and 2 in terms of
convergence speed is shown in Fig. 4. Specifically, the state
probabilities for three (out of five) AMI devices are shown
for 50 transitions. Each of the state probabilities starts from
0 and increases its value up to a certain point based on
the λ, and µ rates. Particularly, in scenario 1: a) the state
probability of device 1 starts from 0 and converges to 0.22 after
35 transitions, b) the state probability of device 3 starts from
0 and converges to 0.23 after 35 transitions, and c) the steady
steady probability of device 5 starts from 0 and converges to
0.15 after 30 transitions. Similarly, in scenario 2: a) the state
probability of device 1 starts from 0 and converges to 0.24 after
18 transitions, b) the state probability of device 3 starts from
0 and converges to 0.27 after 20 iterations, and c) the steady
steady probability of device 5 starts from 0 and converges to
0.26 after 20 iterations.
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Fig. 5. State Probability Convergence of Scenarios 3 and 4

The convergence speed in scenarios 3 and 4 is shown in
Fig. 5. Specifically, the state probabilities for three (out of



TABLE II
SYSTEM PARAMETERS

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Parameters Values

Number of AMI devices 10
Number of trust states 5 5 10 10

λ rates λi = exprnd(5, 15), i ∈ {1, 2, 3}
λ1 = exprnd(5, 15)

λ2 = 2λ1
λ3 = 3λ1

λi = exprnd(5, 15), i ∈ {1, 2, 3}
λ1 = exprnd(5, 15)

λ2 = 2λ1
λ3 = 3λ1

µ rates µi = exprnd(5, 15), i ∈ {1, 2, 3}
µ1 = exprnd(5, 15)

µ2 = 2µ1
µ3 = 3µ1

µi = exprnd(5, 15), i ∈ {1, 2, 3}
µ1 = exprnd(5, 15)

µ2 = 2µ1
µ3 = 3µ1

ten) AMI devices are shown for 50 transitions. Each of the
state probabilities starts from 0 and increases its value up to
a certain point based on the λ, and µ rates. Particularly, in
scenario 3: a) the state probability of device 1 starts from 0 and
converges to 0.13 after 45 transitions, b) the state probability
of device 5 starts from 0 and converges to 0.18 after 35
transitions, and c) the steady steady probability of device 9
starts from 0.02 and converges to 0.15 after 40 transitions.
Similarly, in scenario 4: a) the state probability of device 1
starts from 0 and converges to 0.15 after 17 transitions, b) the
state probability of device 5 starts from 0 and converges to
0.16 after 25 iterations, and c) the steady steady probability of
device 9 starts from 0 and converges to 0.19 after 25 iterations.

Based on the previous results, the state probabilities in sce-
narios 2 and 4 (i.e., λ1 = exprnd(5, 15), λ2 = 2λ1, λ3 = 3λ1,
and µ1 = exprnd(5, 15), µ2 = 2µ1, µ3 = 3µ1) converge
faster than the ones in scenarios 1 and 3, respectively, due
to the arrival and departure rates, being closer to each other,
respectively. Moreover, the converged probabilities in scenar-
ios 1 and 2 (i.e., 0.22-0.26) are higher than the respective
probabilities in scenarios 3 and 4 (i.e., 0.13-0.19). This is
because, in scenarios 1 and 2, the number of states is 5 whereas
in scenarios 3 and 4 the number of states is 10. Therefore, the
probability of convergence to a specific state increases.

IV. CONCLUSION

In this work, we proposed a Markov chain trust model in
order to explore the TV behavior of AMI devices. Moreover,
we presented 3 events that increase the TV and 3 additional
events that decrease the TV. Based on the analytical results,
we conclude that the number of states affects the average TV
of each device. Additionally, the arrival and departure rates
affect the convergence speed. Consequently, in order to design
a high performing trust model, the arrival and departure rates
have to be optimally selected. Future extensions of this work
involve designing a novel method that optimally selects these
rates. In addition, the authors aim to evaluate the proposed
trust model in a realistic scenario consisting of physical and
simulated testbeds.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme

under grant agreement No. 787011 (SPEAR).

REFERENCES

[1] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid—the new and
improved power grid: A survey,” IEEE communications surveys &
tutorials, vol. 14, no. 4, pp. 944–980, 2011.

[2] V. Y. Pillitteri and T. L. Brewer, “Guidelines for smart grid cybersecu-
rity,” Tech. Rep., 2014.

[3] J. E. Fadul, K. M. Hopkinson, T. R. Andel, and C. A. Sheffield, “A
Trust-Management Toolkit for Smart-Grid Protection Systems,” IEEE
Transactions on Power Delivery, vol. 29, no. 4, pp. 1768–1779, 2013.

[4] J.-L. Tsai and N.-W. Lo, “Secure Anonymous Key Distribution Scheme
for Smart Grid,” IEEE transactions on smart grid, vol. 7, no. 2, pp.
906–914, 2015.

[5] P.-Y. Chen, S. Yang, J. A. McCann, J. Lin, and X. Yang, “Detection of
false data injection attacks in smart-grid systems,” IEEE Communica-
tions Magazine, vol. 53, no. 2, pp. 206–213, 2015.

[6] A. Abdallah and X. Shen, “Lightweight Security and Privacy Preserving
scheme for smart Grid Customer-side Networks,” IEEE Transactions on
Smart Grid, vol. 8, no. 3, pp. 1064–1074, 2015.

[7] A. Alnasser and H. Sun, “A Fuzzy Logic Trust Model for Secure Routing
in Smart Grid Networks,” IEEE access, vol. 5, pp. 17 896–17 903, 2017.

[8] Z. Ni and S. Paul, “A multistage game in smart grid security: A
reinforcement learning solution,” IEEE transactions on neural networks
and learning systems, vol. 30, no. 9, pp. 2684–2695, 2019.

[9] D. Pliatsios, P. Sarigiannidis, T. Liatifis, K. Rompolos, and I. Sin-
iosoglou, “A novel and interactive industrial control system honeypot
for critical smart grid infrastructure,” in 2019 IEEE 24th International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD). IEEE, 2019, pp. 1–6.

[10] X. Li, Q. Gao, L. Wu, X. Sun, and S. Deng, “Enhaneigen: A new com-
prehensive trust model for peer-to-peer network,” in Chinese Intelligent
Automation Conference. Springer, 2017, pp. 105–114.

[11] M. Singh, A. R. Sardar, R. R. Sahoo, K. Majumder, S. Ray, and S. K.
Sarkar, “Lightweight trust model for clustered wsn,” in Proceedings of
the 3rd International Conference on Frontiers of Intelligent Computing:
Theory and Applications (FICTA) 2014. Springer, 2015, pp. 765–773.

[12] B.-J. Chang, S.-L. Kuo, Y.-H. Liang, and D.-Y. Wang, “Markov chain-
based trust model for analyzing trust value in distributed multicasting
mobile ad hoc networks,” in 2008 IEEE Asia-Pacific Services Computing
Conference. IEEE, 2008, pp. 156–161.

[13] Z. Wei, F. R. Yu, and A. Boukerche, “Trust based security enhancements
for vehicular ad hocnetworks,” in Proceedings of the fourth ACM
international symposium on Development and analysis of intelligent
vehicular networks and applications. ACM, 2014, pp. 103–109.

[14] R. R. Mohassel, A. S. Fung, F. Mohammadi, and K. Raahemifar, “A
survey on advanced metering infrastructure and its application in smart
grids,” in 2014 IEEE 27th Canadian Conference on Electrical and
Computer Engineering (CCECE). IEEE, 2014, pp. 1–8.

[15] M. Hajiaghayi, B. Kirkpatrick, L. Wang, and A. Bouchard-Côté, “Effi-
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