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Abstract— In this paper, two machine learning techniques 

are applied and compared in order to model leak detection in 

pipelines in noisy environments. A set of accelerometers, 

mounted on the surface of the pipes, was deployed for the data 

acquisition process. Measurements of noise during normal 

operating conditions were recorded as well as measurements of 

leaks, generated on various distances from the sensors. Using 

these measurement data, a training set was created from their 

time-domain and frequency-domain features. The leak 

detection process is then modeled as a binary classification 

problem (leak detection or not). For this problem, two machine 

learning classification techniques were evaluated, the support 

vector machines and the decision trees. The results for each 

learner are compared with the original data from the test 

dataset using representative performance indicators and, 

overall, high levels of accuracy are achieved. 
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I. INTRODUCTION 

     It is well known that, pipeline network systems are 

established for the transportation of fluids, like water, 

petroleum liquids or even gases. The problem is that 

because of their broad use, not only for industrial but also 

for urban purposes, their maintenance and continuous 

monitoring is considered critical. Leak events could cause 

disastrous consequences, both environmental and economic, 

that are globally perceived [1]. 

     Many methods have been proposed in the past for the 

problem of leak detection in pipes. Some of the most 

applied techniques include time-domain reflectometry [2], 

negative pressure methods [3], as well as acoustic-based 

methods [4]. Acoustic methods are non-invasive techniques 

that depend on the vibro-acoustic signature of the noise and 

leak signals on the pipe. A variety of sensors can be utilized 

like piezoelectric, hydrophones, and accelerometers with the 

latter being a common choice due to their relatively low 

cost, their sensitivity in lower frequencies, flat response and 

the sharpness of its peaks when correlated [5]. 

     For leak detection, feature extraction and pattern 

recognition are the main approaches to the problem. 

Previous research includes extraction from time-domain 

features such as mean value, variance, peak value, kurtosis, 

skewness, shape factor etc [6,7], and frequency-domain 

approaches like the cepstrum analysis [8] and the filter 

diagonalization method [9]. 

     From the extracted features, in order to make an educated 

decision about the presence of a leak, some researchers 

employ machine learning techniques [10,11]. The problem 

of leak detection is a reduced down to a classification 

problem, either binary to determine the presence of a leak or 

not or multi-label to classify the magnitude of the leak as 

well [12].  

     In this work, a monitoring system for leak detection is 

proposed utilizing machine learning algorithms to detect 

potential leaks based on variances from the pipe’s normal 

operation noise. The described method is non-invasive and 

relies on the acoustic signals taken from a set of 

accelerometers, mounted on the pipe’s surface. When the 

sensors are set, the pipe’s noise is measured and kept as a 

reference. From the raw data, several time and frequency-

domain features are extracted and, after being compared to 

the reference, they are used to build the training dataset for 

the algorithms. The dataset contains measurements of noise 

during pipe’s normal operating conditions, as well as 

measurements of artificial leaks. So, the leak detection 

problem is reduced to a binary classification task (noise or 

leak). The focus of this paper will be to test two machine 

learning models, Support Vector Machines (SVM) and 

Decision Trees (DT) and evaluate their results in terms of 

accuracy and recall. 

     The proposed approach is utilized as part of a larger 

pipeline monitoring system, currently under development, 

and is only responsible for the leak detection process. Once 

a leak is detected, another independent process of the system 

is activated to locate it. The localization procedure is 

achieved by utilizing wave propagation properties and 

calculating the difference in time of arrival between the 

local sensors’ acoustic signals. The current study will be 

focused on the machine learning approach for the leak 

detection process and the localization procedure will not be 

discussed in this paper. 

II. EXPERIMENTAL SETUP 

     The experimental procedure includes noise 

measurements of the pipes under normal working conditions 

and measurements of artificial leaks. More specific, the 

facility of the Hellenic Petroleum S.A. in Thessaloniki, 



Greece was chosen to conduct the measurements. Two 

different pipeline configurations were selected, including 

the line Dr-1452 (2-6 inches diameter, 8.3kg/cm2 pressure, 

40oC temperature) carrying atmospheric air and the line E-

1404 (8-inch diameter, 4kg/cm2 pressure, 30-35oC 

temperature) carrying water. These pipes’ geometry is 

complex with some of their sections containing machinery 

(automatic valve reliefs, compression chambers, cooling 

structures, etc) and their length can reach up to 300 meters. 

To produce the artificial leaks, there are multiple valves 

across the pipes each with different diameter. 

     The acquisition system consists of a set of three 

accelerometers (PCB 352C33), the National Instruments NI-

9232 data acquisition card with the NI LabView software 

and a laptop for the program execution. The accelerometer 

has an almost flat frequency response in the range of 0 – 15 

kHz, thus a sampling rate of 25.6 kHz was chosen. The data 

acquisition card has an on-board anti-alias filter of 0.4Fs, so 

the system can measure frequencies up to 11 kHz with a flat 

response [13,14]. The data were obtained in intervals of 1 

sec and the dataset contains about 4 hours of measurements 

for both noise and leaks. 

III. FEATURE EXTRACTION – NOISE REFERENCE 

     As the literature suggests, there are many features for 

leak detection, including time and frequency-domain 

features [7,8,15]. As a first approach, a variety of the 

suggested features, including rms, variance, skewness, 

kurtosis, shape factor, crest factor, integral in time, integral 

in spectral density, entropy, clearance factor and peak 

frequency, were examined. Some of them are easily 

computable in real time and others more computationally 

expensive. In this work, the focus will be on features that 

can be derived in real time and can be easily implemented in 

hardware, for future development. Also, since there is high 

correlation between certain features, like rms with variance, 

some of them were discarded without any negative impact 

in accuracy. In fact, highly correlated features tend to reduce 

the algorithm’s reliability and introduce bias [16]. 

Therefore, some of the features had to be eliminated, and the 

remaining are: 

▪ Rms 

▪ Skewness 

▪ Kurtosis 

▪ Clearance factor 

▪ Crest factor 

▪ Peak frequency 

 

Apart from them, the correlation function and the sum of the 

absolute difference in spectral energy between each band of 

250 Hz (labeled as slope sum) were also used as features 

and will be described later in this section. 

     As mentioned, the system’s focus is to monitor the pipe 

and detect potential leaks after its installation. To achieve 

that, a noise measurement of certain duration is kept as a 

reference. In this study’s case, based on the periodicity of 

the pipe’s noise, a 10 sec measurement was chosen as 

reference. This measurement’s spectrum is then divided in 

bands of 250Hz and the energy of every band is calculated. 

Any band with energy higher than the average is filtered. 

These filters will then be applied to the raw data that will be 

used for the feature extraction for noise and leaks. In 

general, the noise signals generated by the machinery 

usually appears in lower frequencies than the leak [17]. By 

this adaptive filtering procedure, this difference in frequency 

can be taken advantage of, and by filtering the noise, the 

leak signal becomes more apparent and eventually easier to 

detect. 

     Apart from that, the noise characteristics of the pipe 

should also be considered, in a way that the reference for 

feature extraction is updated accordingly. More specific, the 

variance in noise levels is mostly caused by the operation of 

heavy machinery (automatic valve reliefs, compression 

chambers, cooling structures, etc) as well as the geometry of 

the pipe’s structure. Before measuring the reference, the 

periodicity of the machinery’s operation as well as their 

distance from the sensors, should, also, be examined. For 

example, in the Dr-1452 gas pipeline, a relief valve is 

activated every 5 minutes, changing the pressure on certain 

sections and thus, the noise levels. Knowing the period of 

the machinery, as well as the difference in noise levels 

between each consecutive valve relief event, for each 

section of the pipe, allows the system to update the 

reference when needed. However, if the new reference 

levels are higher than expected, that reference is discarded, 

since a transient event or a potential leak might have 

occurred during the measurement. As a result, the reliability 

of the system, also, relies on how frequently the reference is 

updated and the duration of the reference measurements. 

     The noise reference was not only used for the filtering 

but also for the estimation of the correlation feature. More 

specific, from the noise reference, a signal of 1 sec duration 

is saved to be correlated to every next measurement. The 

noise that is present on the pipes is not random since it is 

generated from machinery operating in certain frequencies. 

This results in the noise being correlated to a large extend. 

Filtered noise signals from different time frames, when 

correlated, the sum of their cross-correlation function 

squared values is relatively high. However, correlating a 

noise signal with a leak signal results in a lower sum value. 

That difference in the results allows for the exploitation of 

the correlation function as a metric for leak detection.  

     Another metric is how the spectrum variates for leak and 

noise. When a leak is present, certain frequency bands have 

increased energy compared to the noise spectrum. To 

measure that change in spectrum, the absolute difference in 

energy between each band and its next was calculated. The 

sum of these values is used as a feature and labeled for this 

study as the slope sum. 

     Apart from that, the rms values and the energy in each 

band are different for different pipe structures or even 

different sections of the same pipe. In order to make these 

features more generally applicable, their percentage change 

from the noise reference is calculated and used as a feature. 

In other words, the rms and slope sum features are the 

percentage change from the noise reference and not the 

measured values. As a result, a low change in the rms values 

is an indication for the absence of a leak and vice versa. 

     It must, also, be noted, that during the noise 

measurements (a total of 4200 seconds of the recorded data), 

about 200 (4.8%) of them contain the transient event of a 

relief valve occurring near the sensors. Events like that are 

characterized by a sudden increase in kurtosis and crest 

factor value, in such a way that the output of the system can 



be ignored temporarily until the event dies down. However, 

those transient events are present in the training data and 

were labeled as noise. In some cases, these events’ duration 

is higher than one second and the system is only able to 

determine their beginning and their end. The intermediate 

seconds might be falsely classified as leaks while evaluating 

the algorithms and may reduce their resulting accuracy 

scores. Although this is no concern, since the system will 

not produce a classification decision until the end of the 

transient event. 

IV. MODEL COMPARISON – RESULTS 

     The fist dataset contains 13 extracted features from the 

accelerometer noise and leak data. From the correlation 

matrix (fig. 1) calculated over all the features of the dataset, 

a lot of them appear highly correlated, like rms, variance, 

entropy, integral and psd integral, as well as kurtosis and 

shape factor. From the above, only rms and kurtosis were 

selected, and the resulting dataset is comprised of 8 features. 

     By using a grid search cross validation process, the most 

optimal hyper-parameter values for the Support Vector 

Machines (SVM) and Decision Tree (DT) classifiers were 

derived. More specific, each combination of parameter 

values was tested multiple times and the one with the 

consistently highest accuracy score was selected. The 

resulting parameters for each classifier are shown below: 

 

− SVM: C = 60, kernel = polynomial, degree = 7, 

gamma = scale. 

− DT: max_depth = 7, max_features = 7, 

min_samples_split = 9, min_samples_leaf = 6. 

 

     The two resulting classifiers were, then, trained, tested 

and compared with each other. As shown in the accuracy 

score boxplot of fig. 2, while the DT seems to be a better fit 

(97.9%) than the SVM (97.1%) based on the accuracy score, 

the SVM is more consistent, exhibiting a lower standard 

deviation value (0.57%) than the DT’s (0.63%). 

 

 

Fig. 1. Correlation matrix for the 13 extracted features of the overall data. 

 

Fig. 2. Boxplot of the accuracy score for each machine learning algorithm. 

     A more detailed review of the classifier’s quality of 

predictions can be derived from the correlation matrices for 

each class of the tested data (fig. 3,4). The confusion matrix 

indicates the ratio of true and false predictions for each 

class. As illustrated, both classifiers exhibit a low 

percentage in false noise predictions (1.6% for SVM and 

1.2% for DT). In contrast, false leak prediction percentage is 

higher (3.9% for SVM and 4.2% for DT). As mentioned, 

this can be attributed to the transient events present in the 

dataset, that the system during normal operation can detect 

and temporarily disable its output until the end of that event. 

     A more detailed review can be derived from the 

classification reports for each algorithm (Tables I, II). The 

classification report contains metrics about the quality of the 

algorithm’s prediction, like the precision, the recall and the 

f1-score. First, the number of true positives, false positives, 

true negatives and false negatives is calculated for each 

class. For example, for the noise class, a true positive means 

 

 

Fig. 3. Confusion matrix for the support vector machine classifier. 

 

Fig. 4. Confusion matrix for the decision tree classifier. 



that a noise measurement was correctly predicted as noise, 

whereas a false positive means that a measurement was 

falsely predicted as noise when it was a leak. The 

classification report’s metrics, mentioned above, are defined 

by the following equations: 

 
 

 
 

 
 

     In this study’s case, it is important for the model to 

generate as few false alarms (false leak predictions) as 

possible. Considering the above equations, a high recall 

score for the noise class is indicative of small number of 

false alarms (false negatives of the noise class). As a result, 

the model with the highest recall score on that class will be 

the most suitable. In this case, the highest noise recall is 

achieved by the SVM classifier (97.07%) contrary to the DT 

(95.83%).  

TABLE I.  CLASSIFICATION REPORT FOR THE SVM CLASSIFIER 

SVM Classification Report 
Class Labels Precision Recall F1-score 

Noise 0.9688 0.9707 0.9647 

Leak 0.9797 0.9840 0.9818 

Overall Accuracy: 0.9760 

TABLE II.  CLASSIFICATION REPORT FOR THE DT CLASSIFIER 

DT Classification Report 
Class Labels Precision Recall F1-score 

Noise 0.9769 0.9583 0.9675 

Leak 0.9786 0.9883 0.9834 

Overall Accuracy: 0.9780 

V. CONCLUSION 

     In this work, the effectiveness of two machine learning 

models, support vector machines and decision trees, was 

evaluated on a leak monitoring system. The system based on 

a noise reference measurement, and through adaptive 

filtering, records the percentage change of some time and 

frequency-domain features indicative of the signal’s 

characteristics. Based on the training dataset, both models 

exhibit accuracy score levels over 97%, rendering them 

suitable for this application. However, by examining their 

recall score, the support vector machines seem to be slightly 

less prone to false alarms than the decision trees. 

      To improve the current configuration, the introduction of 

a new class to label the transient events can be studied. The 

main cause for a false alarm is the appearance of transient 

events. Training the algorithms to be able to detect them 

may increase the recall percentage of the noise class. While 

the current implementation can detect the beginning and the 

end of these events based on 1 sec measurements, their 

intermediate part is falsely predicted as leak due to their 

similarity in nature. A solution would be to consider 

measurements of higher duration (i.e. 10 sec), though, 

drastically reducing the system’s response time and 

increasing the computational cost. To avoid that and keep 

the system’s response to 1 sec or possibly reduce it, more 

signal features should be introduced to the existing ones. 

Their effect and their feature importance, as well as their 

impact in the system’s response and computational cost is a 

subject for future development. 
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