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Abstract—The operating clock period in modern circuits is 
designated under worst-case operating conditions, in order to 
ensure error free functionality. To accomplish this goal, 
designers take into account the timing of the circuit critical path 
that provides an upper limit for the clock rate. However, that 
limit imposes heavy performance penalties on the design, since 
the critical path is not frequently excited during runtime. In 
contrast with the prevailing methodology, the better-than-
worst-case (BTWC) paradigm treats the circuit timing 
requirements in a more flexible way, as it does not commit to 
serve the demands of the worst-case scenario.  

In this work we develop a novel timing analysis methodology 
inspired by the BTWC approach. Instead of performing the 
standard critical path analysis, we focus on analyzing the timing 
requirements of each operation separately. In the sequel we 
specify an adaptive clock period that is derived by the timing 
requirements of each supported circuit operation. As a result, 
we are guaranteed error-free circuit functionality, as no timing 
violations of individual operations are ever allowed to occur. To 
this end no error correction mechanisms are required. 

We verify the proposed methodology by applying it on four 
different post-layout implementations of ALUs and FPUs.  The 
results we obtain display an average 2.05x throughput increase 
compared to the implementations operating under the worst-
case clock period. We also demonstrate that the area 
requirements of our methodology are trivial as the overhead is 
less than 2% of the original design. 
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I. INTRODUCTION 

Modern integrated circuits are designed to operate under 
the worst-case scenario as far as timing is considered. In order 
to cover all possible timing violations designers employ the 
Static Timing Analysis (STA) methodology, which calculates 
the circuit’s critical path but also induces pessimism into the 
calculation. As a result, the circuit’s critical path acts as a 
threshold for the specification of the clock period, thus 
hampering the performance of the design. 

On the other hand, the better-than-worst-case (BTWC) 
design paradigm employs a different approach. BTWC 
designs often operate at lower-than-critical clock periods, 
allowing timing errors to occur. Such errors are then detected 
and either corrected or the circuit is restored to a previously 
valid state. This approach has proven to be much more 
efficient in terms of performance, as the circuit operates 
under higher clock frequencies. 

In this work we propose a novel timing analysis approach 
based on the BTWC design paradigm. Our approach differs 
from standard BTWC techniques, in that we do not allow 
timing errors to occur. More specifically, we utilize a 
technique that obtains the necessary timing information for 
each individual circuit operation, instead of obtaining the 
timing information about the critical path for all operations. 
As a result, we are able to adaptively scale the clock 

frequency for each corresponding operation, while also 
guaranteeing error-free execution. 

The rest of this paper is organized as follows. Section II 
contains a short research review on the topics of our research, 
whereas Section III discusses the proposed timing analysis 
technique. The experiments conducted, as well as the 
hardware implementation of the proposed methodology, are 
described in Section IV. Finally, Section V gives the 
conclusion of our work. 

II. RELATED WORK 

Previous research on the BTWC design paradigm has led 
to the development of the Razor microprocessor [1]. Razor is 
a fully speculative general purpose processor, which allows 
timing errors to occur, as its pipeline is clocked at higher-
than-critical frequencies. Razor utilizes an error detection 
mechanism, which detects timing errors in real-time and 
corrects them. Another work in [2] focuses on both clock 
scaling and guard banding on specific instruction sequences. 
In that study, researchers manage to analyze the timing 
requirements of upcoming instruction sequences and 
properly scale the voltage levels and clock frequency, in order 
to speed up the execution time. Both studies in [1] and [2] 
employ a BTWC design technique known as timing 
speculation (TS). TS designs efficiently deal with 
performance/energy tradeoffs, as they operate in lower 
voltage thresholds compared to traditional processor designs 
[3][4]. As previous work shows in [5], TS techniques can be 
applied on larger systems, such as superscalar processors, as 
long as error correction mechanisms are properly employed. 
Research in [6] concludes that such mechanisms are 
frequently the source of metastable behavior, a phenomenon 
that produces errors on the designs, hampering their 
functionality. Although researchers are employing various 
strategies to eliminate metastable behavior from TS designs 
[7], some argue that these issues are yet to be properly 
addressed [6]. An earlier work of ours on timing analysis for 
BTWC design is only focused on timing analysis 
methodologies for the processor instruction pipeline and is 
not addressing the clocking issue for any part of the processor 
[8]. 

III. BTWC TIMING METHODOLOGY AND VALIDATION 

The BTWC methodology we propose aims at eliminating 
any error correction penalties imposed by false timing 
prediction events. To this end, we utilize a proactive 
mechanism, which predicts any timing errors and properly 
adjusts the core clock frequency before such errors occur. In 
order to successfully accomplish the aforementioned task, we 
need to extract the circuit’s timing information. Figure 1 
displays a diagram of the timing analysis approach we adopt, 
in order to obtain the necessary timing requirements of the 
design. As our methodology is heavily dependent on the 
system’s architecture, a post-layout netlist along with any 



 

corresponding parasitic information is required. In this work 
we have implemented four different designs of ALUs and 
FPUs, and thus we require the knowledge of the operations 
supported by those designs.   

Instead of opting for an STA approach that would 
calculate the circuit’s critical path and would designate the 
worst-case clock period, we utilize and extend the approach 
of our previous work presented in [8]. As such we perform 
STA for each individual operation supported by the design. 
Below we present the BTWC timing analysis methodology 
steps we propose: 

1) Acquire the post-layout netlist and parasitic 
information of the circuit as well as the operations supported 
by the design. 

2) Set the operation’s input bits at fixed voltage values in 
order to represent the next operation code. 

3) Perform STA in respect to the fixed voltage values set 
in the previous step.  

4) Get the timing results of the current STA and save 
them for later use. 

5) If every supported operation is analyzed and the 
corresponding timing information is collected, go to step 6. 
Otherwise go to step 2. 

6)  Utilize the timing information obtained by step 4 and 
assign a minimum clock period to each supported operation. 
The assigned clock period should satisfy the timing 
requirements of the corresponding operation, according to the 
STA analysis, so that no timing violations should occur. 

7) Finish the analysis. 

By performing the analysis described above, we obtain a 
minimum clock period for each operation’s timing path, 
instead of obtaining a minimum clock period for the whole 
integrated circuit. We are also guaranteed no timing errors 
will occur, as the STA criteria are satisfied for each operation 
separately. As a result, we can utilize such information to 
adaptively scale the clock frequency according to the 
particular operation the FPU/ALU is executing. We do not 
care if the STA criteria are violated for other parts of the 
circuit, as long as those parts are not used for, i.e., are not in 
the path of that operation. 

We validate the BTWC methodology proposed above on 
four different 32-bit post-layout implementations of an ALU 
and FPU. More specifically, we design two single cycle 
execution units, which we name Baseline designs and two 
multi-cycle pipelined units with stricter timing, which we 
name Pipelined implementations. Table I below displays the 

configuration options of both ALU and FPU designs, as well 
as the timing requirements of each supported operation. We 
classify the supported operations into the following 
categories: 

 Arithmetic class, which includes the addition and 
subtraction operation. 

 Multiplication class, which includes the 
multiplication operation. 

 Division class, which includes the division operation. 

 Shift class, which includes any shift operation such as 
shift left logical, shift right arithmetic, etc.  

 Logical class, which includes any logical operation 
such as AND, NOR, XOR etc. 

 Comparison class, which includes any comparison 
operation such as equality, less than, etc. 

 Conversion class, which includes FP-to-INT and INT-
to-FP conversion operations. 

Each physical implementation is assigned a typical clock 
period that depends on the timing requirements of the 
operation with the highest slack. 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Each one of the four physical designs introduced in the 
previous section is implemented with Synopsis IC and 
NaNGate 45 nm standard cell library, while the post-layout 
timing analysis is performed via the Synopsis Primetime tool. 
Figure 2 below depicts the architecture diagram of the 
proposed BTWC methodology on the post-layout 
implementation of a functional unit. The pipelined ALU/FPU 
utilizes the following inputs: 

 Operands A and B, each of 32-bit length. 

Post-layout
Netlist

Perform STA for 
operation Timing results

Database

All operations
Exhausted

?

Exit
Supported operations

Next operation

Assign clock period 
on each operation

Parasitic 
information

 
   Fig. 1. The proposed timing analysis technique for BTWC designs. 

 

TABLE I. TIMING REQUIREMENTS OF THE POST-LAYOUT 

IMPLEMENTATIONS. 

Supported 
Operation 

Class 

ALU implementation 

Baseline Pipelined 

Arithmetic 3 ns 3 ns 

Multiplication 5 ns 2.5 ns (2 stages) 

Division 15 ns 2.5 ns (6 stages) 

Shift 2 ns  2 ns 

Logical 1.2 ns 1,2 ns 

Comparison 1.7 ns 1.7 ns 

Typical clock 
period 

15 ns 3 ns 

Supported 
Operation 

Class 

FPU implementation 

Baseline Pipelined 

Arithmetic 4.6 ns  4.6 ns 

Multiplication 6.8 ns 3.5 ns (2 stages) 

Division 18 ns 3 ns (6 stages) 

Comparison 4.2 ns 4.2 ns 

Conversion 3.8 ns  3.8 ns 

Typical clock 
period 

18 ns 4.6 ns 

 



 

 Operation, which designates the current ALU/FPU 
function. 

 Clock signal, which synchronizes the pipeline 
registers.  

 We design a clock selector module capable of scaling the 
clock frequency, according to the timing requirements of the 
current ALU/FPU operation. To accomplish this, we utilize 
lookup tables, which contain the critical timing requirements 
of each supported operation. Thus, when the functional unit 
activates, the clock control unit utilizes the operation code 
input and accesses the lookup table structure. In the sequel, the 
lookup table returns the timing requirements of the current 
operation and the clock selector designates the corresponding 
clock period. As a result, the clock frequency of the unit is 
adapted according to the timing needs of the current operation.  

In order to efficiently change the clock frequency during 
runtime we  develop and implement a clock control unit.This 
unit takes input from multiple PLLs that operate under 
different periods and utilizes the lookup table information to 

select the proper PLL according to the current ALU/FPU 
operation. We adopt such an approach in order to avoid the 
adaptive frequency scaling of one single PLL due to the 
limitations it imposes on the design. As a result, we utilize a 
set of predefined PLLs and we proceed in dynamically 
selecting one of them according to each operation’s timing 
requirements. 

 To evaluate our methodology, we execute 6 million 
ALU/FPU operations on each design. Figure 3 below depicts 
a post-layout execution instance using the ModelSim tool on 
the ALU. We observe the core clock signal, which is the 
output of the clock selector module (located at the the upper 
side of the waveform), changing its operating frequency 
according to the operation that is currently executed. We also 
measure the throughput improvement we obtain, compared to 
the typical clock execution paradigm. In Figure 4, we depict 
the normalized throughput gain over the original 
implementations. We make two observations based on the 
acquired results: 

 The average throughput improvement over all 
implementations is 105% (or 2.05x the original 
throughput). If we exclude the division operation, 
improvement falls to 60%, which is still significant. 

 Designs with looser timing, such as the Baseline 
ALU, display larger throughput increase, while 
designs with stricter timing display smaller gains. 
Nonetheless, even when stricter timing is considered 
as in pipelined FPU, we managed to obtain a 30% 
speedup compared to the original implementation. 

As we dynamically scale the clock frequency in order to 
meet each operation’s timing requirements, we expect a power 
consumption increase, compared to designs that operate on 
typical clock period. In Figure 5, we display the power 
increase observed when applying the BTWC methodology.  
The power results obtained indicate the following: 

 
                      Fig. 4. Normalized throughput improvement of the BTWC design. 
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 Fig. 2. Architecture diagram of the BTWC design implementation. 

 

 
     Fig. 3. A post-layout execution instance of the ALU using ModelSim. 

 



 

 The average power consumption increase over all 
implementations is 57% (1.57x), which becomes 
32% if we exclude the division operation. Such an 
increase is unavoidable, since higher clock 
frequencies significantly affect the power 
requirements of the design. 

 The more opportunities a design offers for clock 
scaling, the more its power consumption will 
increase. As a result, the ALU baseline’s power 
increase is significantly higher when compared to 
the pipelined FPU implementation. 

In order to calculate the area requirements of the clock 
selector unit, we utilize the IC compiler to extract the area 
requirements of the integrated circuit. Table II below displays 
such information of each individual implementation. We 
observe that the area overhead for our methodology is less 
than 2% of the total area required for each ALU/FPU design. 
Finally regarding the power consumption of the clock selector 
module we measure less than 1% contribution to the total 
power dissipation of the design. 

V. CONCLUSION 

In this paper we propose a novel timing analysis approach 
based on the BTWC premise. We apply our methodology to 
an adaptive operation-based clocking on post-layout netlists 
of ALU and FPU designs. We consider the following 
contributions of our work: 

 Timing analysis of supported operations. By 
analyzing the timing requirements of each operation 
separately, we obtain knowledge on the clock period 
that should be assigned on each individual function. 

 Error-free execution. As the timing requirements of 
every operation are proactively met, we scale the 
clock frequency according to such constrains. As a 

result, we make sure that no timing errors will occur 
during runtime. 

 No error correction is required. The absence of 
runtime timing errors relieves the need for complex 
error correction mechanisms that would increase the 
design complexity and would impose performance 
penalties. 

The results we obtain indicate a significant speedup along 
with a power consumption increase due to the clock 
functioning at higher frequencies. Nonetheless, we have 
managed to achieve an average 1.3x performance-to-power 
ratio improvement that demonstrates a beneficial 
performance/power tradeoff. The overall area requirements 
of the methodology are also proven to be trivial, requiring 
only about 2% of the total design area. 
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                     Fig. 5. Normalized power consumption of the BTWC design. 
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TABLE II. AREA REQUIREMENTS OF EACH IMPLEMENTATION. 

 Integrated circuit 
area 

Clock selector unit 
Area overhead 

ALU Baseline 46 um2  
1 um2 

ALU Pipelined 50 um2 

FPU Baseline 71 um2  
1 um2 

FPU Pipelined 78 um2 

 


