

Adaptive Operation-Based ALU and FPU Clocking

Athanassios Tziouvaras
Dept. of ECE

University of Thessaly
Volos, Greece

attziouv@uth.gr

Georgios Dimitriou
Dept. of CS

University of Thessaly
Lamia, Greece

dimitriu@uth.gr

Michael Dossis
Dept. of CS

University of W.Macedonia
Kastoria, Greece

mdossis@uowm.gr

Georgios Stamoulis
Dept. of ECE

University of Thessaly
Volos, Greece

georges@uth.gr

Abstract—The operating clock period in modern circuits is
designated under worst-case operating conditions, in order to
ensure error free functionality. To accomplish this goal,
designers take into account the timing of the circuit critical path
that provides an upper limit for the clock rate. However, that
limit imposes heavy performance penalties on the design, since
the critical path is not frequently excited during runtime. In
contrast with the prevailing methodology, the better-than-
worst-case (BTWC) paradigm treats the circuit timing
requirements in a more flexible way, as it does not commit to
serve the demands of the worst-case scenario.

In this work we develop a novel timing analysis methodology
inspired by the BTWC approach. Instead of performing the
standard critical path analysis, we focus on analyzing the timing
requirements of each operation separately. In the sequel we
specify an adaptive clock period that is derived by the timing
requirements of each supported circuit operation. As a result,
we are guaranteed error-free circuit functionality, as no timing
violations of individual operations are ever allowed to occur. To
this end no error correction mechanisms are required.

We verify the proposed methodology by applying it on four
different post-layout implementations of ALUs and FPUs. The
results we obtain display an average 2.05x throughput increase
compared to the implementations operating under the worst-
case clock period. We also demonstrate that the area
requirements of our methodology are trivial as the overhead is
less than 2% of the original design.

Keywords— BTWC, adaptive clock scaling, timing analysis,

post-layout implementation.

I. INTRODUCTION

Modern integrated circuits are designed to operate under
the worst-case scenario as far as timing is considered. In order
to cover all possible timing violations designers employ the
Static Timing Analysis (STA) methodology, which calculates
the circuit’s critical path but also induces pessimism into the
calculation. As a result, the circuit’s critical path acts as a
threshold for the specification of the clock period, thus
hampering the performance of the design.

On the other hand, the better-than-worst-case (BTWC)
design paradigm employs a different approach. BTWC
designs often operate at lower-than-critical clock periods,
allowing timing errors to occur. Such errors are then detected
and either corrected or the circuit is restored to a previously
valid state. This approach has proven to be much more
efficient in terms of performance, as the circuit operates
under higher clock frequencies.

In this work we propose a novel timing analysis approach
based on the BTWC design paradigm. Our approach differs
from standard BTWC techniques, in that we do not allow
timing errors to occur. More specifically, we utilize a
technique that obtains the necessary timing information for
each individual circuit operation, instead of obtaining the
timing information about the critical path for all operations.
As a result, we are able to adaptively scale the clock

frequency for each corresponding operation, while also
guaranteeing error-free execution.

The rest of this paper is organized as follows. Section II
contains a short research review on the topics of our research,
whereas Section III discusses the proposed timing analysis
technique. The experiments conducted, as well as the
hardware implementation of the proposed methodology, are
described in Section IV. Finally, Section V gives the
conclusion of our work.

II. RELATED WORK

Previous research on the BTWC design paradigm has led
to the development of the Razor microprocessor [1]. Razor is
a fully speculative general purpose processor, which allows
timing errors to occur, as its pipeline is clocked at higher-
than-critical frequencies. Razor utilizes an error detection
mechanism, which detects timing errors in real-time and
corrects them. Another work in [2] focuses on both clock
scaling and guard banding on specific instruction sequences.
In that study, researchers manage to analyze the timing
requirements of upcoming instruction sequences and
properly scale the voltage levels and clock frequency, in order
to speed up the execution time. Both studies in [1] and [2]
employ a BTWC design technique known as timing
speculation (TS). TS designs efficiently deal with
performance/energy tradeoffs, as they operate in lower
voltage thresholds compared to traditional processor designs
[3][4]. As previous work shows in [5], TS techniques can be
applied on larger systems, such as superscalar processors, as
long as error correction mechanisms are properly employed.
Research in [6] concludes that such mechanisms are
frequently the source of metastable behavior, a phenomenon
that produces errors on the designs, hampering their
functionality. Although researchers are employing various
strategies to eliminate metastable behavior from TS designs
[7], some argue that these issues are yet to be properly
addressed [6]. An earlier work of ours on timing analysis for
BTWC design is only focused on timing analysis
methodologies for the processor instruction pipeline and is
not addressing the clocking issue for any part of the processor
[8].

III. BTWC TIMING METHODOLOGY AND VALIDATION

The BTWC methodology we propose aims at eliminating
any error correction penalties imposed by false timing
prediction events. To this end, we utilize a proactive
mechanism, which predicts any timing errors and properly
adjusts the core clock frequency before such errors occur. In
order to successfully accomplish the aforementioned task, we
need to extract the circuit’s timing information. Figure 1
displays a diagram of the timing analysis approach we adopt,
in order to obtain the necessary timing requirements of the
design. As our methodology is heavily dependent on the
system’s architecture, a post-layout netlist along with any

corresponding parasitic information is required. In this work
we have implemented four different designs of ALUs and
FPUs, and thus we require the knowledge of the operations
supported by those designs.

Instead of opting for an STA approach that would
calculate the circuit’s critical path and would designate the
worst-case clock period, we utilize and extend the approach
of our previous work presented in [8]. As such we perform
STA for each individual operation supported by the design.
Below we present the BTWC timing analysis methodology
steps we propose:

1) Acquire the post-layout netlist and parasitic
information of the circuit as well as the operations supported
by the design.

2) Set the operation’s input bits at fixed voltage values in
order to represent the next operation code.

3) Perform STA in respect to the fixed voltage values set
in the previous step.

4) Get the timing results of the current STA and save
them for later use.

5) If every supported operation is analyzed and the
corresponding timing information is collected, go to step 6.
Otherwise go to step 2.

6) Utilize the timing information obtained by step 4 and
assign a minimum clock period to each supported operation.
The assigned clock period should satisfy the timing
requirements of the corresponding operation, according to the
STA analysis, so that no timing violations should occur.

7) Finish the analysis.

By performing the analysis described above, we obtain a
minimum clock period for each operation’s timing path,
instead of obtaining a minimum clock period for the whole
integrated circuit. We are also guaranteed no timing errors
will occur, as the STA criteria are satisfied for each operation
separately. As a result, we can utilize such information to
adaptively scale the clock frequency according to the
particular operation the FPU/ALU is executing. We do not
care if the STA criteria are violated for other parts of the
circuit, as long as those parts are not used for, i.e., are not in
the path of that operation.

We validate the BTWC methodology proposed above on
four different 32-bit post-layout implementations of an ALU
and FPU. More specifically, we design two single cycle
execution units, which we name Baseline designs and two
multi-cycle pipelined units with stricter timing, which we
name Pipelined implementations. Table I below displays the

configuration options of both ALU and FPU designs, as well
as the timing requirements of each supported operation. We
classify the supported operations into the following
categories:

 Arithmetic class, which includes the addition and
subtraction operation.

 Multiplication class, which includes the
multiplication operation.

 Division class, which includes the division operation.

 Shift class, which includes any shift operation such as
shift left logical, shift right arithmetic, etc.

 Logical class, which includes any logical operation
such as AND, NOR, XOR etc.

 Comparison class, which includes any comparison
operation such as equality, less than, etc.

 Conversion class, which includes FP-to-INT and INT-
to-FP conversion operations.

Each physical implementation is assigned a typical clock
period that depends on the timing requirements of the
operation with the highest slack.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Each one of the four physical designs introduced in the
previous section is implemented with Synopsis IC and
NaNGate 45 nm standard cell library, while the post-layout
timing analysis is performed via the Synopsis Primetime tool.
Figure 2 below depicts the architecture diagram of the
proposed BTWC methodology on the post-layout
implementation of a functional unit. The pipelined ALU/FPU
utilizes the following inputs:

 Operands A and B, each of 32-bit length.

Post-layout
Netlist

Perform STA for
operation Timing results

Database

All operations
Exhausted

?

Exit
Supported operations

Next operation

Assign clock period
on each operation

Parasitic
information

 Fig. 1. The proposed timing analysis technique for BTWC designs.

TABLE I. TIMING REQUIREMENTS OF THE POST-LAYOUT

IMPLEMENTATIONS.

Supported
Operation

Class

ALU implementation

Baseline Pipelined

Arithmetic 3 ns 3 ns

Multiplication 5 ns 2.5 ns (2 stages)

Division 15 ns 2.5 ns (6 stages)

Shift 2 ns 2 ns

Logical 1.2 ns 1,2 ns

Comparison 1.7 ns 1.7 ns

Typical clock
period

15 ns 3 ns

Supported
Operation

Class

FPU implementation

Baseline Pipelined

Arithmetic 4.6 ns 4.6 ns

Multiplication 6.8 ns 3.5 ns (2 stages)

Division 18 ns 3 ns (6 stages)

Comparison 4.2 ns 4.2 ns

Conversion 3.8 ns 3.8 ns

Typical clock
period

18 ns 4.6 ns

 Operation, which designates the current ALU/FPU
function.

 Clock signal, which synchronizes the pipeline
registers.

 We design a clock selector module capable of scaling the
clock frequency, according to the timing requirements of the
current ALU/FPU operation. To accomplish this, we utilize
lookup tables, which contain the critical timing requirements
of each supported operation. Thus, when the functional unit
activates, the clock control unit utilizes the operation code
input and accesses the lookup table structure. In the sequel, the
lookup table returns the timing requirements of the current
operation and the clock selector designates the corresponding
clock period. As a result, the clock frequency of the unit is
adapted according to the timing needs of the current operation.

In order to efficiently change the clock frequency during
runtime we develop and implement a clock control unit.This
unit takes input from multiple PLLs that operate under
different periods and utilizes the lookup table information to

select the proper PLL according to the current ALU/FPU
operation. We adopt such an approach in order to avoid the
adaptive frequency scaling of one single PLL due to the
limitations it imposes on the design. As a result, we utilize a
set of predefined PLLs and we proceed in dynamically
selecting one of them according to each operation’s timing
requirements.

 To evaluate our methodology, we execute 6 million
ALU/FPU operations on each design. Figure 3 below depicts
a post-layout execution instance using the ModelSim tool on
the ALU. We observe the core clock signal, which is the
output of the clock selector module (located at the the upper
side of the waveform), changing its operating frequency
according to the operation that is currently executed. We also
measure the throughput improvement we obtain, compared to
the typical clock execution paradigm. In Figure 4, we depict
the normalized throughput gain over the original
implementations. We make two observations based on the
acquired results:

 The average throughput improvement over all
implementations is 105% (or 2.05x the original
throughput). If we exclude the division operation,
improvement falls to 60%, which is still significant.

 Designs with looser timing, such as the Baseline
ALU, display larger throughput increase, while
designs with stricter timing display smaller gains.
Nonetheless, even when stricter timing is considered
as in pipelined FPU, we managed to obtain a 30%
speedup compared to the original implementation.

As we dynamically scale the clock frequency in order to
meet each operation’s timing requirements, we expect a power
consumption increase, compared to designs that operate on
typical clock period. In Figure 5, we display the power
increase observed when applying the BTWC methodology.
The power results obtained indicate the following:

 Fig. 4. Normalized throughput improvement of the BTWC design.

3,4

1,4

2,1

1,3

2,05

0

0,5

1

1,5

2

2,5

3

3,5

4

BTWC design

BTWC Throughput improvement

Over ALU baseline

Over ALU pipelined

Over FPU baseline

Over FPU pipelined

Average improvement

Clock control unit

Operand A Operand BOperation

ALU / FPU unit

Lookup table

Pipeline register

Pipeline register

Pipeline register

Clock propagation

 Fig. 2. Architecture diagram of the BTWC design implementation.

 Fig. 3. A post-layout execution instance of the ALU using ModelSim.

 The average power consumption increase over all
implementations is 57% (1.57x), which becomes
32% if we exclude the division operation. Such an
increase is unavoidable, since higher clock
frequencies significantly affect the power
requirements of the design.

 The more opportunities a design offers for clock
scaling, the more its power consumption will
increase. As a result, the ALU baseline’s power
increase is significantly higher when compared to
the pipelined FPU implementation.

In order to calculate the area requirements of the clock
selector unit, we utilize the IC compiler to extract the area
requirements of the integrated circuit. Table II below displays
such information of each individual implementation. We
observe that the area overhead for our methodology is less
than 2% of the total area required for each ALU/FPU design.
Finally regarding the power consumption of the clock selector
module we measure less than 1% contribution to the total
power dissipation of the design.

V. CONCLUSION

In this paper we propose a novel timing analysis approach
based on the BTWC premise. We apply our methodology to
an adaptive operation-based clocking on post-layout netlists
of ALU and FPU designs. We consider the following
contributions of our work:

 Timing analysis of supported operations. By
analyzing the timing requirements of each operation
separately, we obtain knowledge on the clock period
that should be assigned on each individual function.

 Error-free execution. As the timing requirements of
every operation are proactively met, we scale the
clock frequency according to such constrains. As a

result, we make sure that no timing errors will occur
during runtime.

 No error correction is required. The absence of
runtime timing errors relieves the need for complex
error correction mechanisms that would increase the
design complexity and would impose performance
penalties.

The results we obtain indicate a significant speedup along
with a power consumption increase due to the clock
functioning at higher frequencies. Nonetheless, we have
managed to achieve an average 1.3x performance-to-power
ratio improvement that demonstrates a beneficial
performance/power tradeoff. The overall area requirements
of the methodology are also proven to be trivial, requiring
only about 2% of the total design area.

REFERENCES
[1] D. Ernst et al., "Razor: a low-power pipeline based on circuit-level

timing speculation," Proc. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36., San Diego, CA,
USA, 2003, pp. 7-18.

[2] A. Rahimi, L. Benini and R. K. Gupta, "Application-Adaptive
Guardbanding to Mitigate Static and Dynamic Variability," in IEEE
Trans. on Computers, vol. 63, no. 9, pp. 2160-2173, Sept. 2014.

[3] R. Ye, F. Yuan, J. Zhang and Q. Xu, "On the premises and prospects
of timing speculation," 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Grenoble, 2015, pp. 605-608.

[4] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis,” in Proc. of the 37th Annual International
Symposium on Computer Architecture (ISCA), June 2010.

[5] V. Subramanian, M. Bezdek, N. D. Avirneni, and A. Somani,
“Superscalar processor performance enhancement through reliable
dynamic clock frequency tuning,” in Proc. of the 37th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2007.

[6] S. Beer, M. Cannizzaro, J. Cortadella, R. Ginosar, and L. Lavagno,
“Metastability in better-than-worst-case designs,” in Proc. of the 20th
IEEE International Symposium on Asynchronous Circuits and
Systems, May 2014.

[7] K. A. Bowman, J. W. Tschanz, N. S. Kim, J. C. Lee, C. B. Wilkerson,
S.-L. L. Lu, T. Karnik, and V. K. De, “Energy-efficient and
metastability-immune resilient circuits for dynamic variation
tolerance,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 49–63,
Jan. 2009.

[8] A. Tziouvaras, G. Dimitriou, M. Dossis and G. Stamoulis, "Instruction-
Based Timing Analysis in Pipelined Processors," 2019 4th South-East
Europe Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM), Piraeus,
Greece, 2019, pp. 1-6.

 Fig. 5. Normalized power consumption of the BTWC design.

2,5

1,2
1,5

1,1

1,57

0

0,5

1

1,5

2

2,5

3

BTWC design

BTWC Power consumption increase

Over ALU baseline

Over ALU pipelined

Over FPU baseline

Over FPU pipelined

Average power increase

TABLE II. AREA REQUIREMENTS OF EACH IMPLEMENTATION.

 Integrated circuit
area

Clock selector unit
Area overhead

ALU Baseline 46 um2
1 um2

ALU Pipelined 50 um2

FPU Baseline 71 um2
1 um2

FPU Pipelined 78 um2

