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Abstract—Correct scheduling in hard real-time systems is of
utmost importance to guarantee that deadlines are not missed.
By mathematical proof, correctness can be demonstrated for the
worst case. Such demonstrations usually do not consider errors
during system run-time, and do not provide quality of service
insights. Such insights can be derived from simulations, but typical
simulators are too slow for long term simulations.

We developed Thready, a fast simulator for sporadic task
systems under errors to investigate the long term behavior of
scheduled systems. Thready’s three order of magnitude speedup
in latency compared with the fastest state of the art simulator
framework allows designers to investigate system performance in
the average case, which facilitates understanding and better design
decisions.

Index Terms—Scheduling algorithms, Real-time systems, Simu-
lation

I. Introduction

Real-time systems, like on-board flight computers, have
timing requirements which need to be satisfied. To meet these
requirements, scheduled jobs need to finish before their deadline.
If job arrival- and execution times are not known beforehand, the
schedule in which jobs are granted access to the processor has to
be created during runtime, according to a scheduling algorithm.

Such an algorithm is correct, if it can always create a schedule
where each job receives enough processor time to finish before
its deadline. Correctness is usually demonstrated for the worst
case, defined by upper bounds on execution times [1], but for
system performance the average case is of interest, which can
be evaluated by simulations. For example, in mixed criticality
scheduling, the time spend in low criticality mode is a key
quality of service (QoS) metric, which depends on the probability
of having a job executing longer than on average. Usually the
assumed probabilities of such an event are very low, which
requires to simulate the system for a long time. For such an
investigation, simulator performance is of utmost importance
to gather results in reasonable wall clock time, but available
simulators fall short in this regard.
Although many simulators have been written, only few are

readily available to researchers [2]. As with most scientific soft-
ware, their value as an scientific artifact has not been recognized,
resulting in lack of software preservation and reproducibility
problems [3]. Moreover, most available simulators are hard to use
in heterogeneous environments due to low portability, are hard
to automate due to their user interfaces, and sacrifice simulation

speed over features or ease of implementation. Although such
feature-rich simulation environments are great to explore new
algorithms, or to investigate the relative short critical instant of a
task system, they don’t allow to run long term simulations.

We fill this gap with Thready, which is the first portable, easy
to automate, integrate, reproduce and understand open source
simulator to address long term simulations for sporadic task
systems:
• Thready is easy to compile and distribute (Section IV-D),
allowing to leverage the computational resources available
in a heterogeneous laboratory computer environment
(Section V)

• Thready’s user interface is easy to understand and
instrument, which fosters integration into scientific data
analysis pipelines and reproducibility (Section IV-A)

• Thready’s three orders of magnitude speedup in latency
allows to investigate QoS and average case performance
metrics in long term simulations (Section V-B)

• Thready allows to investigate systems by simulation which
are infeasible with with current simulators, as demonstrated
with a case study (Section VI)

II. Related work
Simulators are recognized as useful tools to teach, explore,

and understand scheduling algorithms [4]. We differentiate
three main approaches to simulators: Comprehensive simulation
environments configured by the user, frameworks, or libraries, to
construct new special purpose simulators from basic components,
or single purpose programs simulating a specific aspect of a
system or algorithm.
One of the early comprehensive simulators are the STRESS

computer-aided software engineering tools, which use a domain-
specific language to specify the simulated system [5]. Besides
simulation of different algorithms, system configurations, and
shared resources, STRESS allows to analyze and visualize
simulation results. In comparison to other simulators, STRESS
provides many features, as shown in Table I, but is not publicly
maintained as open source.
Another extensive simulator is Cheddar, which allows to

simulate different hard- and software configurations, scheduling
algorithms, supports shared resources, and provides extensive
analysis and visualization capabilities [2]. Compared with
STRESS, Cheddar is actively maintained and available as open



source software. Written in Ada, Cheddar is well suited to
simulate the critical instance of a task system to show the
correctness of the scheduling algorithm, but inappropriate for
long term simulations owing to its slow simulations speed.
A further comprehensive simulators is Realtss, which

supports multiple scheduling algorithms, shared resources,
tracing, and result evaluation [6]. The modular design, written
in TCL, would allow to extend the simulator, but Realtss is
not publicly available as open source. In this regard, it shares
the same fate as schesim, which featured hierarchical, uni- and
multiprocessor scheduling, tracing and analysis [7], and is not
available anymore. schesim allows the user to specify tasks
via a JavaScript Object Notation (JSON) interface, but does not
model errors. Similar to Realtss in features, but without support
for shared resources and evaluation, is RTSim. RTSim targets
education and classroom usage [4], but does not consider errors
in its model, which is a key feature of Thready.
Unlike comprehensive simulators, frameworks like
Fortissimo or rtlib provide building blocks to develop
tailored simulators for a specific system [8, 9]. Such tailored
simulators can achieve better performance than comprehensive
simulators, because they allow to reduce or disable unnecessary
features. Their main drawback is the lack of interfaces, which
need to be written by the user of such frameworks, else the
resulting simulator is a single purpose program, where the
problem definition is part of the simulator, without a possibility
to modify it. Although single purpose programs have legitimate
use cases [10], their creation and maintenance for many similar
problems is a burden.
Contrary, Thready strives to combine the performance

benefits of the framework approach with easy to instrument
interfaces and support for diverse error models.

III. Thready model
Thready simulates preemptive earliest deadline first (EDF)

scheduling of a sporadic task system on a uniprocessor. The
processor is the only shared resource, and there is no overhead of
scheduler operation and context switch. All tasks in the simulated
sporadic task set are independent of each other, and generate a
sequence of jobs. Jobs signal their completion to the scheduler,
which is not aware of the completion time a priori. If jobs are
preempted, they return to the scheduler’s queue, as shown in
Fig. 1. Time is discrete and time step resolution is defined by the
user.

A. Sporadic task system and job generation
The simulator generates jobs according to the parameters of

each task τi . Jobs are characterized by their arrival time αi j ,
actual execution time γi j , and absolute deadline di j .
Task parameters are execution time distributions, minimum

time between two job arrivals pi , and relative deadline di .
Execution time distributions are uniform random distributions
describing the execution time of a task’s job. Moreover, execution
time distributions may change with a given error probability
to model errors, as described in Section III-B. The minimum
time between two job arrivals exhibits the worst case job arrival
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Figure 1. Simulation model of Thready. Each task τi generates jobs which
are EDF scheduled on the uniprocessor. If a job with a higher priority (=earlier
deadline) arrives, the current job on the uniprocessor is preempted and returns
to the queue.
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Figure 2. UML component diagram of Thready

sequence in terms of processor demand. Depending on the
parameterization of the exponential inter-arrival time distribution
for the task, the average time between two arrivals tends to be
larger.

B. Error model
For any job of a task the execution time distribution may

change with a given error probability. This allows to model
different kinds of errors. For example, in a mixed criticality
system one may specify multiple execution time distributions for
high criticality tasks. Then the error probability describes the
probability to overrun a job’s execution time budget. Another
example are transient errors that force a job to restart [12]. The
user’s application therefore defines the meaning of error, and the
simulator is agnostic to the cause of the error.

IV. Interface and implementation
Thready consists of two major components as shown in Fig. 2:

A job generator, and the simulation core which consumes jobs.
For each task, the job generator raises jobs according to the
task’s parameterization, and provides the jobs sorted in order of
arrival time to the simulation core. Generation of the next job
takes place as soon as the job is handed to the simulation core.
The simulation core fetches jobs from the generator, puts them
into his job queue, and schedules the jobs according to EDF on
the uniprocessor.

A. User interface
The task systems are described in JSON. Thready follows com-

mon unix conventions in specifying command line parameters



Table I
Comparison of simulator features

Scheduling algorithms Essential features Ancillary features

Name Uniprocessor Multiprocessor Shared resources Error model Performance Tracing Evaluation Task generation

RTSim [4] X X X
rtlib [9] X X X X
Cheddar [2] X X X X X X
YAO-SIM [10, 11] X X
Realtss [6] X X X X X
schesim [7] X X X X X
STRESS [5] X X X X X
Fortissimo [8] X X
Thready X X X

for configuration, and keeps quiet during normal use, except
mentioning the final simulation result to stdout. If an error was
simulated, Thready outputs information about the first job that
experienced an error. Once the simulation ends, Thready dumps
the scheduler’s job queue and current simulation time to a JSON
file. This state dump can be investigated or used to continue the
simulation. Moreover, the task systems are described in JSON
as well, which allows to instrument Thready by any software
capable of reading and writing JSON.

B. Job generator implementation
The job generator is responsible for creating a stream of jobs

for each task according to the task’s parameters. Every time the
simulation core consumes a job of task τi , the job generator
creates the next job for τi .
The on demand job creation keeps the memory footprint

low, which increases performance by avoiding page misses and
allows to run several simulations in parallel on a single machine.
Contrary, generating and storing a full job trace slows down
execution through page misses, and limits the possible simulation
time to the available memory.

Jobs are sorted by arrival time, that is, the time the job enters
the scheduler’s queue, using a priority queue. This ensures correct
order of job arrival from several tasks for the simulation core.

C. Simulation core implementation
The simulation core implements EDF scheduling by sorting

arriving jobs by their deadline with a priority queue. The job
with the earliest deadline is the job with the highest priority,
and gets access to the uniprocessor. To speed up the simulation,
time is progressed nonlinear by advancing from event to event.
Events mark decision points where the EDF scheduler may switch
the current running job. For example, if a new job arrives,
the deadline of the currently running job is compared with
the deadline of the arriving job. If the arriving job has an
earlier deadline, the current job is preempted and returns to the
scheduler’s queue. Other examples are that a job finishes, or
that a deadline is missed. Therefore, the simulation core can be
described as an event loop, which traverses through all events
until it returns. The return code of the event loop is evaluated
to inform the user about the cause of the exit, and the current
simulator state is dumped to a JSON file.
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Figure 3. Histogram of subroutine cyclomatic complexity. Cyclomatic complexity
corresponds to the number of independent paths through a piece of code, which
increase with additional control flow statements, and should be as low as possible
to ease unit testing and code maintenance. Values below 10 indicate easy to
maintain code, showing that nearly every subroutine in Thready’s code base is
of low complexity.

D. Distribution
The simulator is dedicated to the public domain, to foster access

for the community in the spirit of early research software like
spice, and to mitigate possible reproducibility issues. Motivated
by performance Thready is written in modern C, and distributed
in source form [13]. The small code base of 4599 lines of code
and low complexity, as shown in Fig. 3, makes it easy to integrate
Thready into scientific data analysis pipelines.

V. Evaluation
Thready is written with simulation performance in mind

to allow long term simulations in reasonable wall clock time.
Thready allows to leverage the computation resources of a
distributed, shared, and heterogeneous laboratory computer envi-
ronment by portability and composability: Thready plays well
together with other command line tools like GNU Parallel [14],
which allows to run a plethora of simulations in parallel
distributed on several physical machines.
Thready is trimmed down in size to fit in the level 1 (L1) cache

of most low- and mid range desktop CPUs, which results in large
performance gains and allows to run several simulation threads
on a single machine without running into memory problems.
This is especially beneficial on shared computers which do not
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Figure 4. Heap memory of Thready during simulation of different task systems.
Task systems of different size and fixed utilization of 0.7 are randomly created.
Each simulation sees an increase in memory usage at the beginning and end of
the simulation when JSON data is parsed or simulation results are serialized. Due
to the job generation approach, the memory consumption stays constant during
the actual simulation.

employ any user quotas on memory usage, or provide any other
guarantee for available resources.
In the following subsections, we quantify Thready’s advan-

tages in simulation speed and memory usage, and compare our
results with other simulators.

A. Memory usage

To quantify the memory consumption of Thready we profile
its heap memory using Valgrind’s massif [15]. We generate
random task sets using the UUnifast algorithm, to ensure a
uniform distributed utilization over all tasks [16]. To get results
that are applicable to Thready’s prime use case, some tasks are
allowed to release jobs that experience an error, and therefore
take longer to execute.
Memory consumption peaks at ≈ 34.5 KiB before the actual

simulation by reading and parsing the JSON task system file.
During simulation memory demand is constant at ≈ 2.6 KiB due
to the job generation approach described in Section IV-B, which
allows Thready to run long term simulations. Moreover, this is
irrespective of the number of tasks in the task system, as can be
seen by the qualitative similar curves in Fig. 4.
We selected rtlib to compare our results with other

simulators, because rtlib can be considered as the fastest
available simulator framework with minimal memory consump-
tion available. Moreover, its flexibility allows to construct a
simulator similar in features to Thready. We disabled tracing
for the rtlib based EDF simulator because it severely penalizes
simulation speed and memory consumption, and to make the
comparison as fair as possible. The rtlib based EDF simulator
and Thready are used to simulate the same task system, which
is given in Table II, for a ten hour simulation in millisecond
time step resolution. For this simulation, each task’s relative
deadline and period are equal. As an implicit deadline task
system, it is EDF schedulable with c1 as worst case execution time
(WCET) [17]. Moreover, actual computation demand of jobs is

Table II
Implicit deadline task system for comparing simulators, which is EDF

schedulable with c1 as WCET.

Task i Period c0 c1

1 10 2 4
2 30 1 3
3 40 1 4
4 10 1 2

Table III
Detailed performance results

rtlib Thready

Runtime/s 9.96 × 103 1.68
Context switches 2.49 × 103 1
CPU migrations 1 0
Page faults 168 70

L1 data cache Loads 24.30 × 1012 4.11 × 109

Misses 8.76 × 109 36.44 × 103

uniformly distributedU(c0, c1), and there is no additional inter
arrival time between two jobs of the same task.

The rtlib based EDF simulator allocates all required memory
up front to the simulation, which results in a flat memory profile
of ≈ 134.8 KiB reported by Valgrind’s massif. We compare
this value to Thready’s constant memory profile of ≈ 1.7 KiB
starting after JSON parsing finishes and the simulation core starts
to operate. Compared with the rtlib based EDF simulator,
Thready requires ≈ 98.7 % less heap memory, which enables
to run many simulation threads in parallel on a single machine.
Moreover, the small memory footprint facilitates the simulation
process, as shown in Section V-B.

B. Performance
To quantify the simulation speed of Thready and the rtlib

based EDF simulator we profile both with the linux tool perf.
Both simulators run a long term simulation of the task system
in Table II for 10 years simulated time in millisecond time step
resolution. The system running the simulations is a low-end
workstation, where the simulation threads are first in first out
scheduled with highest priority to minimize the performance
penalty of context switches and CPU migrations. Detailed results
averaged from eight repetition runs are presented in Table III.

The rtlib based EDF simulator runs for (9959.96 ± 443.75) s
to simulate the task system in Table II for 10 years. Thready runs
for (1.6823 ± 0.0243) s to simulate the same, which is a speedup
in latency of Thready with respect to the rtlib based EDF
simulator of≈ 5920. The three orders of magnitude improvement
of Thready over rtlib in performance is facilitated by the small
memory footprint of Thready, which avoidsmemory bottlenecks
and leverages L1 data cache performance.

VI. Case study
The advantages of Thready are demonstrated best with a

case study. We investigate a dual-criticality task system for ten
years under transient errors. The system, shown in Table IV,



Table IV
Case study implicit deadline task system

Task i Period c0 c1 c2 c3 c4 c5

0 5 1 4 – – – –
1 20 1 1 2 4 5 8
2 20 1 2 3 4 5 8
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Figure 5. Histogram of simulation wall clock time. Measurements are gathered
from 64 repetitions of a 10 year simulation of the task system in Table IV. Mean
simulation wall clock time is 44.5 s.

consists of one low criticality task, and two high criticality tasks.
Jobs from the high criticality tasks are not allowed to miss their
deadline. The system is scheduled similar to earliest deadline
first with virtual deadlines, where earlier, virtual deadlines are
introduced to reserve time for a mode change which abandons
all low criticality jobs.

Jobs from high criticality tasks may take longer to finish with
a probability of p = 0.05, or may experience transient errors
which require the job to restart with a probability of p = 0.05.
In 90 % the job’s execution time is uniformly drawn between
c0 and c1. If a job may take longer, the job’s execution time
is uniformly drawn between c2 and c3. The transient error that
requires the job to restart is modeled with a uniform execution
time distributionU(c4, c5). Thready’s user interface allows to
easily repeat the simulation experiment 64 times by running
Thready with different random seeds using GNU Parallel.
From all simulations, only two miss a virtual deadline, and no
system violates its real deadline. The mean simulation wall clock
time is 44.5 s, as indicated by the histogram in Fig. 5.

Sophisticated long-term simulations under errors are possible
due to Thready’s flexible error model, easy to instrument
interface, and simulation performance: The three order of
magnitude speedup in latency allows to simulate in 44.5 s what
else would take ≈ 12.4 h.

VII. Discussion

Thready combines the performance benefits from simulator
framework approaches with easy to instrument interfaces and
support for diverse error models. This frees the system designer
from the burden of developing interfaces or single purpose
programs, and fosters the development of reproducible scientific
data analysis pipelines. Apparently Thready is a specialized

and minimal tool in the tradition of unix: It solves one problem
and solves it well [18]. Although other simulators provide more
features like different scheduling algorithms, shared resources, or
visualization, they lack in performance for long term simulations.
Implementing such features for Thready requires to build further
tools, which is easily enabled by Thready’s simple, short, and
extensible code base.

VIII. Conclusion
Thready is the first portable and reproducible open source

simulator to address long term simulations for sporadic task
systems under errors. By Thready’s three order of magnitude
speedup in latency compared with the fastest state of the
art simulator framework, system designers can investigate
average case performance and QoS metrics, which facilitates
understanding and better design decisions. Moreover, Thready
is easy to integrate with other programs due to its interface,
which enables sophisticated simulations, fosters integration into
scientific data analysis pipelines, and encourages reproducibility
for scheduling simulation experiments.
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