
Improved Networks Routing Using Link Addition

Cristian E. Onete
Former NXP Semiconductors,

The Netherlands
cristian.oneteATgmail.com

Maria Cristina C. Onete
XLIM/Univ. of Limoges/CNRS 7252

 France
cristina.oneteATgmail.com

Abstract—In this paper an improved routing algorithm

suitable for planar networks, static Zigbee and mesh networks
included, is shown. The algorithm is based on the cycle
description of the graph, and on a new graph model based on
arrow description, which is outlined. We show that the newly
developed model allows for a faster algorithm for finding a direct
and a return path in the network. The newly developed model
allows further interpretations of the relationships in any simple
planar graphs. Examples showing the implementation of the
newly developed model are presented, too. Keywords—graph
cycles, path-finding, routing, arrow model, group theory.

I. INTRODUCTION

Routing is an essential feature of any communication
network. Almost any networks-related standard, including those
by IEEE (Zigbee), recommends the existence of routing
protocols. The cornerstone of routing is the ability to find paths
between two given end nodes. Most such algorithms rely on
node hopping and are based on the node description of the graph
associated to the network [6-9]. We note that many types of
networks deployed in everyday use (including home networks,
static sensor networks, etc.) can be modelled as a connected
planar graph.

In a previous paper [10] it has been shown that a routing
algorithm can be developed using the cycle description of the
underlying graph. This method has several advantages over
algorithms based on node-hopping, such as its lack of back-
tracking.

However, one disadvantage of the method presented in [10]
was that the data obtained as the result of the algorithm is
difficult to process. In this paper we address this shortcoming by
means of a new “arrows” model for the graph. This model
significantly improves the path finding algorithm based on
cycles mergers.

The paper is organized as follows:
Paragraph II introduces the basic notations used in the paper.
Paragraph III describes the arrows group, while paragraph

IV describes the use of the arrows group.
Paragraph V describes the routing algorithm using the

arrows group and Paragraph VI is dedicated to conclusions and
future work.

II. BASIC NOTATIONS

A. Basic Definitions and Notations

It is known that any graph is represented by a set of links,
which are connected to each other via nodes [1]. The number of
links departing or arriving in a node is called the degree of the
node. A link connected to a node is said to be incident to the
node. A suite of links connecting two end nodes by passing

through other nodes is called a path. A closed path, i.e., a path
starting and ending in the same node is called a cycle. A cycle
that visits every node of the graph exactly once is called a
Hamiltonian cycle; a graph that has at least one Hamiltonian
cycle is called a Hamiltonian graph. A link connected to a cycle,
i.e., a component of a given cycle, is said to be incident to the
cycle. Two cycles are adjacent if they share only a single link.

The total number of nodes in the graph is denoted as N and
the number of links is denoted as L. In this paper we shall use
simple planar connected graphs, which have no self-looping
nodes, no leaves (nodes of degree 1) and no parallel links
between any two nodes.

Algebraically, the graph’s connectivity can be described by
using either the nodes-links or the cycles-links incidence matrix.
The nodes-links incidence matrix A is an NxL matrix (it has N
rows and L columns), whose elements describe which links
connect which nodes. The cycle-links incidence matrix B is a
CxL matrix, where C is the number of independent cycles, and
L, the number of links of the graph. In a planar graph, the values
C, L, and N are such that [5] C=L-N+2.

Labelling is used to uniquely identify different parts of the
graph, such as nodes, links, and cycles. In addition, graphs
representing nodes are usually undirected. However, a randomly
chosen direction is used in order to, e.g., analyze network
functions. Neither the chosen labelling, nor the added direction,
directly influence the properties of the graph.

In a planar graph, its cycles divide the geometric plane into
an internal and an external region, and a cycle defines the border
between the two regions. In this paper we assume that the cycle
with the highest index C is the border cycle. Recall that a planar
graph is a graph that can be drawn in a planar embedding such
that no link crossings are present.

More on the cycles description will be presented in the
subsequent paragraphs. In the simple planar connected graphs
this is always the case [12].

In this paper we will use an incidence matrix describing how
the links are related to the cycles. This matrix is the cycles-links
incidence matrix BCxL of the associated graph, which will be
presented in a later paragraph. It is orthogonal to the nodes-links
incidence matrix A. [1, 5].

Fig. 1 Adjacency definition

B. Adjacency and cycles merger

Onete and Onete defined [2,3] the notion of cycle merger,
which is applicable to adjacent cycles only. We only briefly
describe this notion below, as it was already described in [10].

Fig.1 depicts a subnetwork in which the nodes and the cycles
are labelled and a direction was defined for the links and cycles
as previously discussed. Note that for example cycles c1 and c2
are adjacent through the common link connecting nodes 3 and 8.
The two cycles can be merged as shown in Fig.2, following the
method of [2,3]. Notably, we obtain a larger cycle by removing
the adjacent link of the two cycles. Algebraically this can be
obtained by adding either the rows or the columns describing c1
and c2 in the matrix LC, as described by [2]. Notably, LC is the
cycles Laplacian of the network and it is obtained using the
cycles-links incidence matrix: LC=B*BT.

 We depict the result of the merger, denoted c1|c2 in Fig.2.

Fig.2 Merging two cycles

The papers [2,3] describe an algorithm of obtaining the
Hamiltonian cycles in a graph by using cycle merger. This
method needs no backtracking and thus the algorithm is
parallelizable.

III. ARROWS GROUP

A. Graph Arrows

In this section we define graph arrows as an algebraic object,
then proceed to describe operations on such objects. We depart
from a (finite) set of nodes N. We define an arrow as an ordered
tuple (𝐼, 𝐽)ሬሬሬሬሬሬሬሬሬ⃗ with 𝐼, 𝐽 ∈ 𝑁. Intuitively this object will correspond
to a directed arrow from node I to node J, as depicted in Fig.3:

Fig.3 Graph arrow from node I to node J

In addition to arrows of the form (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ , we define two special

types of arrows. The first is called the arrow at infinity1 ∞ሬሬሬ⃗ ,

defined as an arrow from any node to itself. Thus, (𝚤, 𝚤)ሬሬሬሬሬሬሬሬ⃗ =

(𝚥, 𝚥)ሬሬሬሬሬሬሬሬሬ⃗ = ∞ሬሬሬ⃗ . The second is the zero arrow, denoted 0ሬ⃗ .
We define an “addition” operation on graph arrows, which

we denote as +ሬሬ⃗ .

Definition 1. Let 𝑁 be a node set and let 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 be nodes
in that node set. Let ∞ሬሬሬ⃗ and 0ሬ⃗ be the two special nodes defined
above. We define the addition operation +ሬሬ⃗ as follows:

 (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝚥, 𝑘)ሬሬሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝑘)ሬሬሬሬሬሬሬሬሬ⃗ ;

1 We use the name “arrow at infinity” similarly to how points at
infinity are defined for elliptic curves. This special arrow is in
fact an equivalence class of self - loops.

 (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ ;
 (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝑘, 𝚤)ሬሬሬሬሬሬሬሬሬ⃗ = (𝑘, 𝚥)ሬሬሬሬሬሬሬሬሬሬ⃗ ;

 (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝑘, 𝑙)ሬሬሬሬሬሬሬሬሬ⃗ = 0ሬ⃗ if 𝑖 ≠ 𝑙 and 𝑗 ≠ 𝑘;

 (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ ∞ሬሬሬ⃗ = ∞ሬሬሬ⃗ +ሬሬ⃗ (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ ;
 0ሬ⃗ +ሬሬ⃗ (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ 0ሬ⃗ = 0ሬ⃗ ;
 0ሬ⃗ +ሬሬ⃗ ∞ሬሬሬ⃗ = ∞ሬሬሬ⃗ +ሬሬ⃗ 0ሬ⃗ = 0ሬ⃗ .
 ∞ሬሬሬ⃗ +ሬሬ⃗ ∞ሬሬሬ⃗ = ∞ሬሬሬ⃗

Consider the set of arrows defined by (𝑁 𝑥 𝑁) ∪ 0ሬ⃗ ∪ ∞ሬሬሬ⃗

under the operation of arrow addition +ሬሬ⃗ . This structure is
closed under addition, it has an identity element ∞ሬሬሬ⃗ , and it is
commutative. Moreover, using the first rule it holds that

(𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝚥, 𝚤)ሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝚤)ሬሬሬሬሬሬሬሬ⃗ = ∞ሬሬሬ⃗ . As a result, we usually call (𝚥, 𝚤)ሬሬሬሬሬሬሬሬ⃗

the inverse of (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ . Note that for each arrow of the form (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗
there is a unique inverse. The inverse of ∞ሬሬሬ⃗ is itself. However,
the zero element has no inverse. In addition, the addition
operation we have defined is not generally associative. Indeed,
it holds that:

ቂ(𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝑘, 𝑙)ሬሬሬሬሬሬሬሬሬ⃗ ቃ +ሬሬ⃗ (𝚥, 𝑘)ሬሬሬሬሬሬሬሬሬሬ⃗ = 0ሬ⃗ +ሬሬ⃗ (𝚥, 𝑘)ሬሬሬሬሬሬሬሬሬሬ⃗ = 0ሬ⃗

However, associating the second and third terms yields a
different result:

(𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ ቂ(𝑘, 𝑙)ሬሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝚥, 𝑘)ሬሬሬሬሬሬሬሬሬሬ⃗ ቃ = (𝚤, 𝚥)ሬሬሬሬሬሬሬሬ⃗ +ሬሬ⃗ (𝚥, 𝑙)ሬሬሬሬሬሬሬሬ⃗ = (𝚤, 𝑙)ሬሬሬሬሬሬሬሬ⃗

The operation of inverting a graph arrow is shown in Fig. 4,
where the inverse of the full arrow is the dotted one.

Fig.4 The inverse of a graph arrow

B. Basic graph operations with arrows

Our goal is to ultimately express cycle merger in terms of arrow
addition. We first draw a parallel between planar graphs, their
nodes and links, and our graph arrow structure. We view the
node at infinity as a single node, defined more particularly by
the addition that created it. We will additionally view links in
the graph as a tuple of arrows, one direct, and one inverse,
between the nodes -- this will be shown later in Section IV.

1) Serial addition

Consider a graph containing the nodes 𝑖, 𝑗, 𝑘 shown in Fig. 5a,
linked by graph arrows (representing directed links in the
graph). The addition operation yields the arrow in Fig. 5b.

Fig.5 Serial composition of graph arrows

2) Parallel composition of graph arrows

For the most part in this paper we have considered graphs which
contain no parallel links. However, the arrow addition operation
may yield such parallel links. The second rule of addition shows
us that the parallel composition of graph arrows (as depicted in
Fig.6a) yields a single arrow (as shown in Fig.6b).

Fig.6 Parallel composition of graph arrows

3) Series-parallel composition of graph arrows

We can combine the two basic operations we described in the
previous sections.

Fig.7 Series-parallel composition of graph arrows

We begin from the complex graph in Fig.7a. By a serial
composition on the first three nodes we would obtain the graph
in Fig.7b. The parallel composition of the arrows in the right-
most node yields Fig.7c. Finally, a renewed serial composition
yields the arrow in Fig.7d.

We note that using a sequence of serial and parallel
compositions based on arrow addition will ultimately turn a
complex planar graph in a simple one, as it will eliminate self-
loops and parallel links.

IV. USING GRAPH ARROWS

In this section we show how to use graph arrow addition in
finding Hamiltonian circuits, by using as an example the figure
of the dodecahedron (shown in Fig. 8). Typically an
dodecahedron has single links between the nodes; however, our
first step is to de-duplicate each link into two graph arrows, one
direct and one inverse.

We label the cycles of the dodecahedron in underlined
numbers and choose a random orientation for each cycle
(clockwise for the inside cycles, counter-clockwise for the
outside one). Adjacent cycles, such as 11 and 6, have one link

in common; however, this link is travelled in one direction in
one cycle, and in the opposite direction in the adjacent one. As
we will indeed show, when de-duplicating the links into graph
arrows, this allows us to associate the direct graph arrow to one
cycle, and its inverse, to the other. In Table 1 we present the
graph-arrow description of the cycles, in which we have
deduplicated the links into two arrows which are inverse to one
another. This table shows the correspondence between nodes
and cycles, and can furthermore be used to generate the cycles
– links incidence matrix B. For

Fig.8 Arrows group graph

Table 1 Cycles-arrows description

Cycle Arrows

1 (16,17)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ,(17,18)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (18,19)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (19,20)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (20,16)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

2 (18,17)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (17,7)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (7,8)ሬሬሬሬሬሬሬሬሬሬ⃗ , (8,9)ሬሬሬሬሬሬሬሬሬሬ⃗ , (9,18)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗

3 (18,9)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (9,10)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (10,11)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (11,19)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (19,18)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

4 (19,11)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (11,12)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (12,13)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (13,20)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (20,19)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

5 (20,13)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (13,14)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (14,15)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (15,16)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (16,20)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

6 (15,6)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (6,7)ሬሬሬሬሬሬሬሬሬሬ⃗ , (7,17)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (17,16)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (16,15)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

7 (1,2)ሬሬሬሬሬሬሬሬሬሬ⃗ , (2,8)ሬሬሬሬሬሬሬሬሬሬ⃗ , (8,7)ሬሬሬሬሬሬሬሬሬሬ⃗ , (7,6)ሬሬሬሬሬሬሬሬሬሬ⃗ , (6,1)ሬሬሬሬሬሬሬሬሬሬ⃗

8 (2,3)ሬሬሬሬሬሬሬሬሬሬ⃗ , (3,10)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (10,9)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (9,8)ሬሬሬሬሬሬሬሬሬሬ⃗ , (8,2)ሬሬሬሬሬሬሬሬሬሬ⃗

9 (3,4)ሬሬሬሬሬሬሬሬሬሬ⃗ , (4,12)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (12,11)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (11,10)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (10,3)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗

10 (4,5)ሬሬሬሬሬሬሬሬሬሬ⃗ , (5,14)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (14,13)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (13,12)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (12,4)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗

11 (5,1)ሬሬሬሬሬሬሬሬሬሬ⃗ , (1,6)ሬሬሬሬሬሬሬሬሬሬ⃗ , (6,15)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (15,14)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (14,5)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗

12 (1,5)ሬሬሬሬሬሬሬሬሬሬ⃗ , (5,4)ሬሬሬሬሬሬሬሬሬሬ⃗ , (4,3)ሬሬሬሬሬሬሬሬሬሬ⃗ , (3,2)ሬሬሬሬሬሬሬሬሬሬ⃗ , (2,1)ሬሬሬሬሬሬሬሬሬሬ⃗

the case of the dodecahedron, this incidence matrix has 30
entries per row (the number of links) and will be not be
represented here because of lack of space. However, the non-
zero entries, corresponding to the links found in each cycle, are
found in Table 1. As the nodes-links and cycle-links incidence
matrices are orthogonal, there is no direct adjacency matrix
between the nodes and cycles of a graph. However, we can use
matrix B to find paths in the graph, as we shall show
subsequently.

V. ROUTING ALGORITHM USING ARROWS

As discussed in Section I, our graph-arrow addition method will
be applied to a specific path-finding algorithm, namely one
based on cycle-merger.
 In this method, in order to find a route between an initial
node 𝑖 and a final node 𝑓, we must first identify which cycles
comprise those nodes. Recall that if a node has a degree d then

the respective node can be found in d cycles [1]. Once all such
cycles have been identified, one creates a Laplacian of the
cycles, and we perform the cycle-merger algorithm until the two
nodes are within the same larger cycle [2,3,11]. At this moment
we know which cycles have participated in merger.
Furthermore, because the result of the program is a larger cycle,
a direct path and a return paths exist. The program can be
extended to provide all possible routing paths connecting the
starting node and the final node, but this will be more time
consuming.
 The next step should be identifying the routing paths. The
result of the algorithm of [10] was a list of the travelled cycles.
The complexity of translating this list to usable routes was not
taken into account into the complexity analysis, and is indeed
costly. In the following we will optimize the format of the results
towards a possible use in routing.
 Suppose that in our example of the dodecahedron we want
to find a path between the start node 𝑖 = 1 and the final node
𝑓 = 20. In the original paper, cycle merger is done starting from
rows of the cycle-links incidence matrix. We do the same here,
but we depart from the cycle-arrow incidence matric. Each time
we are meant to merge two cycles, we add the corresponding
rows by using the rules of the addition operation described in
Definition 1.
 Following the algorithm ultimately results in (for instance)
the following vector whose non-zero entries are given in
Equation 1.

[(5,1)ሬሬሬሬሬሬሬሬሬሬ⃗ , (1,2)ሬሬሬሬሬሬሬሬሬሬ⃗ , (3,4)ሬሬሬሬሬሬሬሬሬሬ⃗ , (6,5)ሬሬሬሬሬሬሬሬሬሬ⃗ , (7,6)ሬሬሬሬሬሬሬሬሬሬ⃗ , (8,7)ሬሬሬሬሬሬሬሬሬሬ⃗ , (9,8)ሬሬሬሬሬሬሬሬሬሬ⃗ , (10,11)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (13,12)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (14,15)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ,

(2,10)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (12,3)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (4,14)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (14,16)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (18,9)ሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (11,19)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (20,13)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (16,17)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ , (17,18)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ,

(19,20)ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗] (1)

 We note that each entry of this vector represents a tuple of
values, each in the set of nodes N. As a first step, we create two
node lists: a list denoted 𝑇 which will contain the first nodes
(tails) of each arrow, and a list denoted 𝐻 which will contain the
second nodes (heads) of each arrow. Our goal is to find a path
between our chosen nodes, 1 and 20.
 We first apply the Knuth-Morris-Pratt (KMP) algorithm [4]
to the tail list 𝑇 to find node 1. Subsequently we find the node
that is at the same index in the head list 𝐻 as the node 1 was in
the list 𝑇; denote this node by 𝑗. We now remove node 𝑖 from
list 𝑇 and 𝑗 from 𝐻. We subsequently search for node 𝑗 in list 𝑇
(using the KMP algorithm), and then continue in the same way
until we reach node 𝑓. This will give us a path from 𝑖 to 𝑓.
 For our example we start from node 1 in list 𝑇: we find it on
the second position. To this corresponds the value 2 in list 𝐻.
We remove the two values and continue. We find node 2 in 𝑇
and the corresponding value is node 10 in list 𝐻, etc.
 The overall algorithm can be described.

Program Path Finding using graph arrows;

Input: the starting node ns and the end node ne;
 Determine the cycles containing ns and ne;
 Determine the cycles paths comprising both ns and ne

 using cycles mergers;
 If there is no path, then STOP and print “No path found”;
 Once a path is found, translate the list of graph arrows
 to sets T and H as discussed.
 By successive applications of the KMP algorithm as
 described above, find a direct and a return path

 between the nodes;
Output : the path discovered.

The following observations apply (see [10]):
1. Each time, the number of cycles limits the iterations to

less than C.
2. The end criteria of the program can be flexible such that
it can be stopped whenever a first path is found or
alternatively it can be run until a path with a specific length
is obtained.

Because of the linear costs of the KMP algorithm, the overall
cost of finding the longest path becomes 𝑂(𝑁ଶ) -- the algorithm
has linear complexity and it must be run at most 𝑁 times.
Obviously, the additional finding that the Knuth-Morris-Pratt
algorithm adds nothing to the complexity encourages us to say
that there are very good prospective that the algorithm may be
used in real time systems.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an alternative method to
processing the results of the routing algorithm of [10]. A new
graph model has been introduced based on graph-arrows, which
in turn provides us with a very efficient implementation of the
algorithm. It allows the use of Knuth-Morris-Pratt algorithm,
which in turn provides limited overhead in execution time. This
encourages us to use this approach in other problems related to
graphs.

It is our belief that an arrow-based description of the graph
is a very powerful tool for describing graphs and it is
worthwhile using it in other graph related problems.

REFERENCES
[1] A. Bondy, U.S.R. Murty, “Graph Theory”, Springer Graduate Texts in
Mathematics, 2008
[2] C.E.Onete, M.C.C. Onete, “Building hamiltonian networks using the
laplacian of the underlying graph”, ISCAS 2015, pp. 145-148.
[3] C.E.Onete, M.C.C. Onete, “Finding the Hamiltonian circuits in an
undirected graph using the mesh-links incidence”, 19th IEEE International
Conference Electronica, Circuits and Systems (ICECS), 2012, pp. 472-475.
[4] https://www.ics.uci.edu/~eppstein/161/960227.html
[5]Balabanian, N., Bickart, T.A.: “Electrical Network Theory”, John Wiley
and Sons, Inc., 1969.
[6]A. P. Bhondekar, H. Kaur, Routing Protocols in Zigbee Based networks: A
Survey, https://www.researchgate.net/publication/275637579
[7]A. Narmada, P. Sudhakara Rao, Performance Comparison Of Routing
Protocols For Zigbee Wpan, IJCSI International Journal of Computer Science
Issues, Vol. 8, Issue 6, No 2, November 2011 ISSN (Online): 1694-0814.
[8]Prativa P.Saraswala, A Survey on Routing Protocols in ZigBee Network,
International Journal of Engineering Science and Innovative Technology
(IJESIT) Volume 2, Issue 1, January 2013,pp.471-476.
[9]P. S. Shiju Kumar, A. Ramesh Babu, A Survey on Routing Techniques in
ZigBee Wireless Networks in Contrast with Other Wireless Networks, Indian
Journal of Science and Technology, Vol 10(42),
DOI:10.17485/ijst/2017/v10i42/120345, November 2017,pp.1-8.
[10] Onete, C.E., Onete, M.C.C. “An Alternative to Zigbee Routing Using a
Cycles Description Of a Planar Graph”, MOCAST2019, Thessaloniki 2019,
pp. 29 – 32.
[11] Kavitha, Telikepalli & Liebchen, Christian & Mehlhorn, Kurt & Michail,
Dimitrios & Rizzi, Romeo & Ueckerdt, Torsten & Zweig, Katharina. (2009).
Cycle Bases in Graphs -- Characterization, Algorithms, Complexity, and
Applications. Computer Science Review. 3. 199-243.
10.1016/j.cosrev.2009.08.001.

