
Hardware Acceleration of Decision Tree Learning
Algorithm

Asim Zoulkarni
Department of Electrical

and Computer Engineering
NTUA

Athens, Greece
el13068@mail.ntua.gr

Christoforos Kachris
Institute of Communications

and Computer Systems
NTUA

Athens, Greece
kachris@microlab.ntua.gr

Dimitrios Soudris
Department of Electrical

and Computer Engineering
NTUA

Athens, Greece
dsoudris@microlab.ntua.gr

Abstract—Decision Tree Classification variants are among the
most popular machine learning algorithms and have been applied
in various fields with success. Their versatility and popularity
along with the ease to use make it imperative that solutions be
found regarding its performance optimization problem, hence in
this paper we tackle this issue by applying methods to optimize
a Decision Tree Learning implementation (version C4.5), that
will be executed in a heterogeneous computing system involving
FPGA along with CPU, making use of the tools offered by
the Software-Defined System On Chip (SDSoC) development
platform. Initially, a profiling of the code is done, after which
the computationally intensive part of the algorithm is determined,
that is found to be the decision tree training part and within that
part specifically, the Information Gain computations. Then the
kernel has been developed as a hardware accelerated function
that assumes the latter computations. The presented performance
of the kernel was evaluated on a Zed platform integrated with
Xilinx Zynq-7000 SoC in a FPGA-based heterogeneous system
and it was shown that the accelerator can yield up to 2.48x kernel
speedup in a single decision tree’s training part, compared to an
embedded ARM processor based implementation.

Index Terms—machine learning, data mining, decision tree,
C4.5, SDSoC, hardware acceleration

I. INTRODUCTION

Machine learning algorithms and consequently data min-
ing approaches such as Decision tree learning have been
increasingly gaining popularity among fields such as medical
diagnoses, risk evaluation of credit card application approval,
consumers’ behaviors, etc. Such a broad spectrum of fields
where decision tree learning and classification are applicable
along with the growth of available information to a massive
extent in the era of big data make it desired to seek ways
of optimizing a computationally wise heavy algorithm that
can make use of this information and which alone is widely
utilized and forms a single fraction of ensemble learning
methods such as the random forests, etc. There the benefits
of an optimization in the former algorithm would be even
more highlighted as the speedup is expected to be boosted by
a significant degree.

Hardware engineers, from their perspective, make an ef-
fort to seek ways of making hardware acceleration methods
accessible for a software designs of the algorithm that are
abstracted from the hardware they are going to run on, only

to the highest degree it is still possible. This software approach
of hardware acceleration involving Field Programmable Gate
Arrays (FPGA)-based heterogeneous system is addressed in
the presented work.

Such approaches are intended in order to improve the energy
efficiency of broadly used machine learning algorithms’ imple-
mentations. Modern day sophisticated processors that would
be alternatively used for that purpose, though fast in high clock
frequencies yield high energy consumption, escalating while
more and more cores are utilized in parallel implementations.
Recently, FPGAs are increasingly getting popular since they
offer the option of highly parallelized implementations, where
operations and code patterns are executed simultaneously
in versatile computational units suiting only the necessary
functions utilizing only as many elements such as logic
gates required by the specific computations, in contrast to all
alternative hardware, that have a fixed architecture requiring
the integration of all of its components to operate.

The main contributions of the paper include the presentation
of a novel hardware architecture for acceleration of decision
tree learning algorithms, secondly, a performance evaluation
and comparison with Central Processing Unit (CPU) imple-
mentations and finally the possibility for up to approximately
2.5× speedup and lower energy consumption compared to
typical CPU implementations.

II. BACKGROUND

A. Classification Model

Machine learning algorithms such as decision tree learning
are applied as models to numerous cases that require classi-
fication and prediction. Specifically a tree structure is formed
in order to represent the input data in a more compact way
of if-then rules, the so called classification rules. Every node
in the tree defines a control condition of a given attribute
of the instances and every branch that departs from that
node corresponds to a different discrete value of the specific
attribute. In every node, the case’s value for the node’s attribute
is examined and the branch to follow is hence determined.

The procedure during which the tree is build is called deci-
sion tree training. According to the C4.5 decision tree learning
algorithm and similarly with the Iterative Dichotomiser 3 (ID3)

algorithm, a tree is built using the metric of information
entropy. It works in a top-down manner recursively building
the tree by finding the feature of the input data that will be
used as splitting criteria at each point. An extension provided
by the C4.5 algorithm is the capability to deal with continuous
features, discretizing them in two categories below or equal
and greater than a threshold.

B. Training Data Discretization

Depending on the training data set and whether it contains
continuous features, a prepossessing for the binary discretiza-
tion of the latter is applied; subsequently, the feature is treated
as categorical with each instance evaluated as exceeding or
subceeding an appropriately elected value. The threshold that
divides the continuous feature (assuming it to be a real
number) into two classes of the lower and higher values is
calculated as follows. Let S = {a1, a2, ..., an} be the training
values of a continuous attribute in a sorted order and m the
number of classes {C1, C2, ..., Cm} of the data set. Out of
the n − 1 possible splits evaluated, the one that minimizes
the information metric is selected. Using the sorted order of
the values, the maximum information conveyed is found in a
single pass. The information metric is calculated for each split
ai as:

G(S) = −ph · E(Sh)− pl · E(Sl)

where

ph,l =
|S>ai,6ai |
|S|

are the fractions of the values greater and lower than or equal
to the split, respectively and

E(S) = −
m∑
i=1

pi · log2(pi)

is the information entropy of a set, where

pi =
freq(Ci, S)

|S|

is the fraction of the values within the set that correspond to
the class i.

C. Decision Tree Training

Having dealt with with continuous features, the decision
tree building part treats attributes in a universal way for both
continuous and categorical values. For a given set of training
data there are the three following cases evaluated by the
algorithm [7].

• If the instances provided by the data set belong to a single
class, the tree is a leaf corresponding to that class.

• If the data set contains no instances, the tree is a leaf
corresponding to a default class.

• If the data set contains instances belonging to vari-
ous classes, then the feature A with attribute values

{a1, a2, ..., an} that maximizes the information gain cal-
culated for each feature as

G(S,A) = E(S)−
n∑

i=1

pi · E(Si) (1)

where E(S) is the entropy of the examined feature and

pi =
|Si|
|S|

(2)

where Si is the new data set that would be yielded if
the split were to occur in the i-th attribute value. The
algorithm proceeds to create every tree node recursively
using subsets of the data.

III. SOFTWARE ACCELERATION

The FPGA offers the capability of in-parallel executing
functions that could be run by the CPU, resulting in the ben-
efits obtained by the parallel implementation as a circuit. The
SDSoC development environment provides the opportunity to
design code in higher level languages such as C/C++ and
automatically produce the vhdl description that implements
the indicated function. In this project, we focus on identifying
a function that is highly computationally intensive, separating
it from the rest of the code and let it be compiled as a circuit.
This code pattern yields a number of restrictions for both the
code selected to be hardware accelerated as well as the rest of
the code sharing structures and other variables with the target
function. The profiling of the algorithm execution is needed
in advance to help us identify that function.

A. Algorithm Profiling

A custom implementation of the C4.5 decision tree algo-
rithm in C++ is designed, developed and then profiled as to
what percentage of the time is consumed by each subprocedure
in order to help us identify the most highly computationally
intensive one. The results are presented in the diagram below.

DT Training 62.5

DT Testing 8.8

DT Pruning 6.2

Training Data Parsing 12.5

Testing Data Parsing 8.3

Misc Intermediate 1.7

DT Training
DT Testing

DT Pruning

Training Data
Parsing

Testing Data
Parsing

Misc
Intermediate

Fig. 1. Profiling of Decision Tree (DT) Classifier for Adult [10] data set.

In the testing part, a single path along the decision tree is
traversed for each of the testing instances. The training part
of the algorithm is by far the most time consuming compared
to with the testing part and although the classification part

has the ability to be parallelizable by any desired factor
regarding the independent testing of the input instances, in
this work we focus on accelerating the most time consuming
part which is the training one. The building of the decision tree
involves a series of highly time consuming procedures some of
them being mainly memory intensive requiring high memory
usage and are the hardware acceleration of such functions
is deemed inefficient. On the other hand, the part regarding
the information gain computation is time consuming enough
to be worth being accelerated separately, requiring memory
utilization capable of being provided by the FPGA resources,
unlike the rest of the training part that requires processing
the data set and its subsets simultaneously and in a recursive
manner.

Specifically, from the profiling carried out for a C++ im-
plementation of the C4.5 algorithm, 62.5% of the total time
consumed for the whole procedure, including the time required
to load and process the raw data from the input files, and
the whole training and testing parts of the algorithm, was
required by the training part. The testing part consumed only
the 8.3% of the total time while the time required to parse
these data consumed 8.8% of the total time and when the
ratio of the instances for the two parts of the algorithm
(training and testing) respectively was 2:1. Since the scaling
of the testing data yields commensurate time increase to the
respective procedure, due to the O(1) complexity of a single
instance processing for a constant number of features, the new
percentages of the time consumed for each part, if the ratio
training to testing data were to become 1:1, by increasing the
amount of the testing data to match that of the training data,
would be

ptrain = 62.5%× 100

117.1
= 53.4%

and

ptest = 2× 8.3%× 100

117.1
= 14.2%

and these percentages justify our decision to attempt an opti-
mization on the decision tree training part, since the amount
of time spent on building a decision tree with a specific
amount of instances takes up to 3.76 times more than it would
for the same amount of instances of the testing part, which,
including an inner sight of the implementations of these parts
as mentioned earlier, is deemed computationally not intensive.
Having said that, we might now want to focus on what nested
functions of the training part would be time-wise worth of
being implemented as hardware functions that would run on
FPGA. Of the 62.5% of the time that is consumed for the
building of the tree, its two portions of 37.5% and 25%, are
required by the processes of a) forming the reduced data set
that provides the subset of instances that the next step on the
recursive building of the tree will use, and b) the evaluation of
the splitting feature at each step of the building, respectively.

B. Hardware Function Selection
The first sub-part of the training is highly memory inten-

sive, and though parallelizable, this characteristic lies upon

accessing random-access memory (RAM) in parallel manner,
of data that very easily exceed the amount of dynamic-RAM
(DRAM) provided by an FPGA-based heterogeneous system,
especially when these instances of data-subsets are required
to co-exist in the RAM while the tree is built recursively, in
a top-down manner. On the other hand, the part regarding the
evaluation of the splitting feature at each step of the recursion,
requires the processing of the whole data included in each
subset of training instances. During this part, the information
gain is calculated for each feature by means of evaluating the
frequencies of the attributes and applying of the metric each
time, and the feature maximizing the information gain is its
output.

The sub-part of the splitting feature evaluation is imple-
mented as hardware function through special re-design of the
code with adjustments regarding the structures used to describe
the data processed by the FPGA as well as the rest of the
algorithm that refers to the very same data.

IV. ACCELERATOR DESIGN

The next step in our work is to implement the selected
function in hardware. For this purpose, we make use of the
SDSoC development environment that allows the designer to
control the C/C++ synthesis through optimization directives
(#pragma) [8].

First, the initially two-dimensional matrix containing the
byte-encoded attributes, is re-designed as a serialized array
that is stored in a physically contiguous memory to achieve
the optimal kernel-processor streaming strategy. Additional
characteristics inherent to the splitting feature evaluation func-
tion and the data structures involved in it are taken into
account as the hardware design using high-level directives is
implemented.

Second, the fact that the data are not accessed in a sequential
manner with regards to the serialized array, leads us design a
different way with which the data will be streamed through
the Advanced Extensible Interface (AXI) interconnect core.
Every attribute column is processed once in order to have
the attributes’ frequencies counted and stored in block-RAM
(BRAM) for the proceeding calculations, while at the same
time the class column of the data which corresponds to the
class that each instance targets is traversed as many times as
the number of features is. For this purpose an extra reference
on the last column of the training data streamed along with
each column of attributes. This way sequential access of
each column is achieved with the kernel accessing different
features’ values as different references that are streamed simul-
taneously. This optimizes the throughput of the communication
required each time the hardware function is utilized and the
data selected by the host are streamed for further processing.

Furthermore, a number of pragma directives were added to
specify an implementation of the maximum information gain
evaluation as well as the metric’s values calculations. To pro-
ceed in the further explanation of the accelerator architecture
regarding the selected function, we shall explain in more detail
the work carried out by that function.

For each feature column the frequencies of the present
attributes with respect to the corresponding classes that the
training instance targets are calculated and stored in a two-
dimensional frequency matrix as demonstrated below.

TABLE I
INSTANCE OF ATTRIBUTE’S VALUES FREQUENCIES WITH RESPECT TO

CORRESPONDING CLASSES

working class Income Classes
attributesa ≤ 50K > 50K

private 12947 3569
state-gov 683 256

federal-gov 449 276
local-gov 1108 445

...
...

...
self-emp-inc 363 454

aStatistics obtained from Adult [10] data set.

Such a frequency matrix is formed by a single column of
attributes corresponding to just one feature of the training data
and one is formed for every external loop of the maximum
information gain evaluation. A single iteration of the respective
feature column whose data are streamed through the AXI
interface and are processed sequentially is enough for its
items’ frequencies to be stored in the dual-port BRAM in
the kernel. The dual port BRAM is selected for it offers
the opportunity to evaluate the attribute’s frequencies with
respect to the corresponding classes of two features at a time
(hence the two attribute arguments in Fig.2; the offset is the
address difference of the two references) making use of the
independent nature of the processing on the FPGA. This is
accomplished by specifying the unroll pragma directive with
a factor of two to the loop regarding the iterations over the
number of features.

Additionally, an attempt to optimize the loop regarding the
iteration over the input data that measures the aforementioned
frequencies is made. This is achieved by the use of the
pipeline pragma directive, the effect of which essentially
allows concurrent operation executions of the loop’s body
by means of deploying loop iterations in overlapping time
intervals, yielding a respective drop to the parameter of the
loop’s initiation interval to the minimum possible for the
specific loop and which is determined by SDSoC during the
synthesis.

The next step of the processing carried out at the kernel
regards the processing of the recently measured frequencies
and the application of the information gain formula with
the calculation of the respective cumulative sums of entropy
portions. This part of the algorithm is implemented as a
series of double nested loops of which the innermost have
the pipeline applied to their iterations over the number of
classes of the data set and the outermost have it applied to the
iterations over the number of attribute values per examined
feature. The latter is furthermore unrolled by a factor that
would statistically allow the throughput of the frequencies
matrix reads to be maximized as the accesses of its elements
is done by the independent unrolled loop parts that can refer to

the different blocks of the array simultaneously, for which the
respective block partition pragma is specified for the linearized
matrix. At the same time, the last column of the training data
that corresponds to the target class of the training instances has
been streamed and stored in dual-port BRAM in the FPGA,
that allows the unrolled by a factor of two loops that iterate
over equal amounts of the features’ attributes (split in half)
and enables the access of the classes values at the same time
while guaranteeing the independence of the execution of these
two unrolled loop parts.

As far as the cumulative sum calculation is concerned, the
application of the formula (1) that calculates the information
gain of the column/feature is utilized and for which a number
of adjustments and directives are applied yielding the respec-
tive resource allocation where the additions, multiplications
and divisions of floating point numbers are going to take place.
The additions for the purposes of the cumulation of the sum
of the entropy are implemented in floating-point adders that
use only DSP48s [9] primitives, whereas the multiplications
of the fractions (2) with their respective logarithm portions are
calculated in floating-point multiplier using similar primitives,
while the divisions that are required for the fractions (2)
calculations are carried out at floating-point divider.

Processing System (PS)

ARM Cortex-A9

AXI INTERCONNECT

A
X
I D

M
A

A
X
I D

M
A

A
X
I D

M
A

A
X
I L

IT
E

A
X
I L

IT
E

A
X
I L

IT
E

C
la

sse
s

L
e
n
gth

W
id

th

O
ffse

t

Programmable Logic (PL)

Evaluating Splitting Feature Kernel

Stream d ata, store classes in BRAM

Evaluate attribute frequencies with

respect to corresponding classes

Calculate Information Gain based on

frequencies

Update feature with maximum gain

A
ttrib

u
te

s (1)

A
ttrib

u
te

s (2)

Fig. 2. Above is the simplified block design of the heterogeneous architecture
involving FPGA and CPU, featuring therebetween communication.

A simplified block design is shown in Fig. 1 that illustrates
the system architecture design. It includes a processing system
that carries out the rest of the calculations assigned to the
FPGA implemented kernel, which performs the task of the
splitting feature evaluation, through the calculation of the
information gain metric. Data stored in arrays are transferred
through AXI direct memory access (DMA) while the rest

integer type variables are transferred through the AXI4-Lite
interface.

V. PERFORMANCE EVALUATION

The case studies considered for the performance evaluation
of the training and testing parts of the decision tree clas-
sifier were the Adult and Census-Income, multivariate data
sets provided by the UCI machine learning repository [10];
features of both data sets included both categorical and integer
type attributes with the latter including floating-point type
attributes as well. A quantitative profiling of the data sets
shows that the former includes 48842 total instances of 14
features, 8 of which are of categorical attributes and 6 are of
continuous values upon which the discretization prepossessing
was applied, as was done for the 7 continuous features of a
total of 40 features, in the Census-Income database of 199523
training instances and 99762 testing ones, with the rest 33
being categorical value features.

One of the major factors that could hinder the speedup
and the overall gain of a hardware function implementation
on FPGA is the communication overhead caused by the need
to transfer the data between the Processing System (PS) and
Programmable Logic (PL). Such being the case, in this work
we had to compare and deduce the most appropriate means
of achieving the PS-PL communication. As mentioned earlier,
the classes’ attributes are accessed in a periodic manner which
violates the sequential access pattern characterizing the rest of
the attributes. That led us to evaluate the use of zero-copy for
the data streamed, either partially for the classes, or for the
whole data set streamed, an overall implementation that was
observed to yield higher communication overhead compared
to the implementation that resulted in the final kernel speedup.
Moreover, it should be noticed that the hybrid implementation
imposals of more pre-allocated structures preference over the
classic dynamic ones that are typically used, further boost
the system speedup of the training part as a whole, even
through functions running out of FPGA. The measurements
presented were observed for the Adult and Census-Income
data sets at data motion and operating clock frequencies both
being at 142.86 MHz, the resource utilization for which by
the hardware function is shown on table II (DSP: digital signal
processors, BRAM: block random-access memory, LUT: look-
up tables, FF: flip-flops). In order to achieve the performance
of the implementation presented a number of parameters were
subjects to fine tuning, such as those of the array partition
factors, loop-unrolling factors and resources where operations
such as additions, multiplications and divisions were carried
out.

The C/C++ code of the algorithm along with the software-
defined system (SDS) and high-level synthesis (HLS) direc-
tives that result in the presented architecture, was compiled
into an executable file that along with the bit-stream generated
by the SDSoC development platform required for the FPGA
configuration, was able to run on the ZedBoard (Zynq-7000
All Programmable SoCs) system yielding the following results

TABLE II
RESOURCE UTILIZATION FOR SPLITTING FEATURE EVALUATION

Resource Hardware Function Resourcesa
Name Used Total % Utilization
DSP 48 220 21.82

BRAM 75 140 53.57
LUT 35807 53200 67.31
FF 47608 106400 44.74

aResources regard ZedBoard (Zynq-7000 SoC).

in time and accuracy, for both mentioned sets respectively, as
shown in table III:

TABLE III
TIME AND ACCURACY COMPARISON

Data set Implementation
Name Software Hybrid Speed-up Accuracy
Adult 2.33s 0.94s 2.48 82.54%

Census-Income 34.27s 15.5s 2.21 94.26%

VI. CONCLUSION

In this work, an implementation that featured hardware
acceleration of a decision tree classifier was presented, where
functions that posed bottlenecks for the performance optimiza-
tion were let to run on a common processor (Dual-core ARM
Cortex-A9) and functions that their hardware implementation
was deemed beneficial, had their architecture-involving FPGA-
designed in a novel way.

While attempting to accelerate the classification part of
the algorithm might as well have given impressive results,
two main reasons focused our interest on the training part.
The intrinsic simplicity of an implementation regarding the
single decision tree classifying part along with the bulk of
research carried out already regarding classification using
decision tree ensembles, contributed to our decision to attempt
an optimization on the learning procedure instead.

Acceleration using state-of-the-art hardware is increasingly
getting popular and is sought as a resort for performance
optimization for various machine learning algorithms among
which decision trees and their ensembles have great potential.

VII. RELATED WORK

A lot of research has been carried out on how either decision
tree classifiers or their ensembles such as random forests, other
ensemble methods such as the so-called Bagging (Bootstrap
Aggregation) or Boosting are to be implemented in some
sort of computing system involving FPGAs. The fact that
a decision tree constitutes a unit of the structures built by
any of these methods indicates the importance of studying
the optimization of a decision tree classifier. Any possible
benefit obtained is transferable to an implementation involving
multiple trees possibly over a cluster of FPGA computing
nodes, where scaling the amount of nodes utilized causes
increased performance gain; such an approach is made by [1],
where software driven FPGA implementation of a decision

tree ensemble classifier was proposed and the scalability
over tree structures requiring more than the FPGA provided
memory was examined. The classification part’s performance
was optimized in an implementation that offered the capability
to deal with any size or number of decision trees determining
whether FPGA alone execution or in combination with CPU
is required to handle the size of the structure.

In [2] a different approach on performance optimization
was presented, where decision tree ensembles of a determined
amount of nodes were stored in an appropriate amount of
FPGAs required for them to fit in the on-chip memory and
communication protocols regrading their optimal inference
were examined. Ensembles of shallow decision trees up to
depth of 9 fit into a single FPGA, but trees of increased
depth would require doubling of FPGA nodes utilized per
depth increase of 1. Such are the trade-offs when attempting
to optimize the decision tree ensemble classifier that requires
the storage of the classifying structure into FPGA. In our
work instead, FPGA is used to perform the computationally
intensive training part without the need for the whole data set
or decision tree to even fit into the usually restricted on-chip
memory.

Another work as shown in [3], proposed an acceleration
method of a decision tree classifier by means of exploiting
the comparative ease with which FPGA performs calculations
with integers over floating-point values. In their proposal the
feature label should require the minimum amount of bits to
enumerate all labels and the threshold regarding the continuous
values shall be stored in 32 bit floating-point variable as any
less bits would compromise predictive accuracy. In our work,
on the other hand, the optimal way to treat floating-point
features would be to evaluate the threshold of every continuous
attribute as a C/C++ floating point type at parse time by the
CPU and store the testing data as byte-encoded values. This
way, having the FPGA to processes any such floating-point
types is circumvented, saving data streaming time along with
floating-point comparison time, as a common processor might
do this very job faster; byte is deemed the best data type that
is the most flexible for both CPU and FPGA to deal with at
the same time, avoiding redundant type conversions.

Among the several aspects as to how studies have sought
to tackle the challenge of optimizing decision tree learning
in hardware, comes the work of [4]. In it, the Hoeffding
tree algorithm is studied and its hardware implementation is
optimized through the fine tuning of parameters such as the
number of quantiles required for the attribute learning, which
despite having an impact on the resulting accuracy, helps
achieve a significant speedup.

An additional proposal could be found at [5], where four
different architectures were designed as an answer to the de-
mand for decision tree classifying performance optimization,
all of which were shown to out-speed equivalent software-only
implementations. Each unit of the ensemble was implemented
in different module in two possible ways; pipelined and se-
quential decision tree evaluation, for which modules speedups
varied from 9.56 to 5188.74 times.

The approach that was closer to the current one was the one
at [6]. Similarly a hybrid architecture was proposed, where the
Gini Score computational weight was let for the FPGA to pro-
cess, whereas the rest of the decision tree classifying algorithm
was running on CPU, yielding again a speedup compared to a
software-only implementation. The main differences between
it and our work are on a theoretical level the metrics used
for the decision tree building where we used the information
gain instead and on a more technical level, the implementation
and architecture design. The results were presented for an im-
plementation that treated only binary classes, while indicating
the extension to support more. Additionally, the binary nature
of the classes was exploited to expand the Gini Score formula
into a predetermined amount of sums and divisions, whereas in
this work a more flexible approach is made. This by allowing
the evaluation of the formula to be carried out as a for loop,
making use of the high level synthesis capability to transform
C-style loops, as well as the rest of the hardware function code,
into hardware seamlessly, without loss in accuracy compared
to when the implementation runs on CPU only.

ACKNOWLEDGMENT

This project has received funding from the Hellenic Foun-
dation for Research and Innovation (HFRI) and the Genal
Secretariat for Research and Technology (GSRT) under grant
agreement no 2212: CloudAccel Hardware Acceleration of
Machine Learning Applications in the Cloud. This project has
also received support from Xilinx by means of providing the
hardware and software tools used to develop end evaluate the
results of this work.

REFERENCES

[1] Owaida, M., Zhang, H., Zhang, C., Alonso, G. (2017). “Scalable
inference of decision tree ensembles: Flexible design for CPU-FPGA
platforms”. 2017 27th International Conference on Field Programmable
Logic and Applications.

[2] Owaida, M., Alonso, G. (2018). “Application Partitioning on FPGA
Clusters: Inference over Decision Tree Ensembles”. 2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL).

[3] Zhao, S., Sun, Y., Chen, S. (2018). “A Discretization Method for
Floating-Point Number in FPGA-based Decision Tree Accelerator”,
2018 IEEE 4th International Conference on Computer and Communi-
cations (ICCC).

[4] Lin, Z., Sinha, S., Zhang, W. (2019). “Towards Efficient and Scalable
Acceleration of Online Decision Tree Learning on FPGA”. 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM).

[5] Struharik, R. (2015). “Decision tree ensemble hardware accelerators for
embedded applications”. 2015 IEEE 13th International Symposium on
Intelligent Systems and Informatics (SISY).

[6] Narayanan, R., Honbo, D., Memik, G., Choudhary, A., Zambreno, J.
(2007). “An FPGA Implementation of Decision Tree Classification”.
2007 Design, Automation & Test in Europe Conference & Exhibition.

[7] J. Ross Quinlan, “C4.5. Programs for Machine Learning”, Elsevier Inc.
(1993), pp. 24-31.

[8] Xilinx Inc., “SDx Pragma Reference Guide UG1253”, January 24, 2019,
pp. 33-62.

[9] Xilinx Inc., “Vivado Design Suite User Guide High-Level Synthesis
UG902”, December 20, 2018, pp. 167-171.

[10] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository”,
2017. [Online]. Available: http://archive.ics.uci.edu/ml

