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Abstract—In this paper, we address the problem of joint user
association and power allocation for non-orthogonal multiple
access (NOMA) networks with multiple base stations (BSs). A
user grouping procedure into orthogonal clusters, as well as
an allocation of different physical resource blocks (PRBs) is
considered. The problem of interest is mathematically described
using the maximization of the weighted sum rate. We apply
two different swarm intelligence algorithms, namely, the recently
introduced Grey Wolf Optimizer (GWO), and the popular Par-
ticle Swarm Optimization (PSO), in order to solve this problem.
Numerical results demonstrate that the above-described problem
can be satisfactorily addressed by both algorithms.

Index Terms—Non-Orthogonal Multiple Access (NOMA), user
association, power allocation, 5G, evolutionary algorithms

I. INTRODUCTION

Non-Orthogonal Multiple Access (NOMA) techniques will
be a key technology of fifth generation (5G) cellular net-
works [1]. Current orthogonal multiple access (OMA) systems
result in low spectrum efficiency, when network resources
are assigned to mobile users with poor channel conditions.
However, if we consider the power domain, NOMA systems
can deliver high spectrum efficiency even with poor channel
conditions. In the NOMA scheme, the mobile users may
share the same frequency, time, and code, yet they should
be differentiated in power levels [2]. To this end, the funda-
mental concept of NOMA scheme is the use of successive
interference cancellation (SIC) technique by the mobile users’
receivers with rich channel conditions, to significantly reduce
the interference level of mobile users with poor channel
conditions. As a result, SIC technique cancels the intra- cell
or cluster interference on mobile users’ receivers [3]. The
user association problem is becoming more challenging in
NOMA networks, as some unique features of traditional OMA
networks, such as co-channel interferences, require re-design.

The authors in [4] formulate the user association problem
in NOMA networks by grouping the users into orthogonal
clusters and associating them different resource blocks using a
game theoretic approach. However, game theoretic approaches
which are commonly used in user association problems have
limitations and work under certain assumptions. On the other
hand, evolutionary algorithms (EAs) are global optimizers that
work well regardless of the optimization problem in hand. We
describe the problem formulation with the network sum rate
utility function.

A parameter that introduces more complexity to the problem
is power control. Usually, as in [4] the power coefficients
are considered constant for all network. In our case we find
the suitable power coefficients for every NOMA user. Evolu-
tionary algorithms inspired by nature are suitable techniques
for solving this problem. In this paper, we apply the Grey
Wolf Optimizer (GWO) [5], which was recently introduced as
a population-based algorithm that mimics grey wolf hunting
behavior. Additionally, a comparative study between the GWO
obtained results and the legacy particle swarm optimizer (PSO)
[6] is performed. The derived results indicate that GWO al-
gorithm outperforms the PSO algorithm in general. Moreover,
we conclude that NOMA schemes with power control can be
successfully utilized.

II. SYSTEM MODEL

We consider, several base stations (BS) and users using
NOMA techniques. Additionally, the BSs use physical re-
source blocks (PRBs) to transmit their data. Therefore, we
have a downlink NOMA system that has a set of users
N = {1, 2, · · · , Nu}, and |N | = Nu is the set cardinality
or the number of users. Moreover, we consider as T =
{1, 2, . . . TRB} with cardinality |T | = TRB , the set of PRBs.



Therefore, there are TRB orthogonal clusters. The set of users
associated with PRB t is denoted Et with cardinality |Et| = Et.
In OMA systems each PRB is assigned to a single user. This
is not the case in NOMA systems, where more users share
the same PRB with different power levels. To this end, the
users’ receivers cancel the intra-cluster interference with SIC.
We consider that NOMA techniques are used by all users in
individual clusters. The received signal at user m in any cluster
Etk is formulated as [4]:

Y tkm = gtkm

√
ptkmskm + nm︸ ︷︷ ︸

desired signal

+

KBS∑
i=1,j 6=k

|Eti|∑
j=1

gtimsij︸ ︷︷ ︸
inter−cluster interference

+

+ gtkm

|Etk|∑
i=1,i6=m

√
ptkiski︸ ︷︷ ︸

intra−cluster interference

(1)

where |Etk| is the size of Etk, gtkm is the channel between
user m and PRB t, which is allocated by BS k, skm denotes
the transmitted signal, ptkm is the power allocation coefficient,
and nm is the noise.

Additionally, the channel power gain can be expressed as

|gtmk|2 = |ĝtmk|2GPL(dmk) (2)

where ĝtmk ∼ CN (0, 1) is the circular-symmetric complex
Gaussian zero mean noise between BS k and PRB t to user
m, GPL(dmk) is the path loss propagation. The path loss
propagation among user m and the BS is modeled with path
gain (loss) GPL(d). In this study, we use the outdoor macro
cell line-of-sight (LOS) model defined in [7]. This is expressed
as

GPL(dmk) = −103.4− 24.2 log10(dmk) (dB) (3)

where dmk is the distance between BS k and user m in
kilometers.

In any cluster Etk, the power allocation coefficients∑|Etk|
i=1 ptki ≤ 1.
We assume that there is an allocation of maximum M

NOMA users in each physical resource block, where the power
allocation coefficients subject to ptk,1 ≥ ptk,2 ≥, ...ptkm, .. ≥
ptkM To this end, we can consider the M−th user as the best-
served user within each cluster. The m-th user’s receiver in Etk
will take into account the i-th user’s signal as noise (m > i)
and will decode its own signal with signal-to-interference-plus-
noise ratio (SINR):

ctkm =
|gtkm|2ptkm

|gtkm|2
|Etk|∑
i=m+1

ptki +
KBS∑

i=1,j 6=k

|Eti|∑
j=1

|gtim|2ptij + 1
ρ

, (4)

where ρ = Pt/σ
2 is the transmit signal-to-noise ratio (SNR),

Pt denotes the transmit power, and σ2 is the variance of the
Additive White Gaussian noise (AWGN). Additionally, the last

M -th user’s receiver will apply SIC to cancel the intra-cluster
interference, and will decode its own signal with SINR:

ctkM =
|gtkm|2ptkM

KBS∑
i=1,j 6=k

|Eti|∑
j=1

|gtiM |2ptij +
1
ρ

. (5)

As it was previously mentioned, the intra-cluster interference
decoding and removal signal (due to the previous user) are
required, in order to the m-user to be able to decode its own
signal. Let us consider that the SIC process, which is executed
at the n-th user, is perfect. As a result, we can conclude that
the condition, which is required for a perfect SIC process,
is stated by the following expression: Rtk,n→m ≥ Rtk,m→m
for n > m, i.e. the n-th user for decoding the m-th user’s
signal is larger than the rate of the m-th user for decoding its
own signal. The condition for a perfect SIC process can be
transformed to

|gtkn|2ptkm

|gtkn|2
|Etk|∑
i=m+1

ptki +
KBS∑

i=1,j 6=k

|Eti|∑
j=1

|gtin|2ptij + 1
ρ

≥ |gtkm|2ptkm

|gtkm|2
|Etk|∑
i=m+1

ptki +
KBS∑

i=1,j 6=k

|Eti|∑
j=1

|gtim|2ptij + 1
ρ

.

Therefore, the n-th user is able to cancel the m-th user’s signal
by applying the SIC process, if the following condition is true:

Q(Etk)
4
=

|gtkn|2
KBS∑

i=1,j 6=k

|Eti|∑
j=1

|gtin|2ptij + 1
ρ

− (6)

|gtkm|2
KBS∑

i=1,j 6=k

|Eti|∑
j=1

|gtim|2ptij + 1
ρ

≥ 0, (7)

∀n ∈ {2, ...,M},∀m ∈ {1, ...,M − 1} (8)

As a result, the data rate of any user m, which is connected
with BS k, and is allocated within a PRB t is

Rtkm = log(1 + ctkm)

A. Problem Formulation

We consider the binary variable bki, which describes the
relation between the k-th BS and the i-th user. It can be
formulated as

bki =

{
1, if user i is related to the BS k
0, otherwise. (9)

Moreover, we can define a second binary variable yti, which
describes the relation between the i-th user and t-th PRB as

yti =

{
1, if user i is related to the PRB t
0, otherwise. (10)

Analogous to [4], we take into account an extra weight fac-
tor that is based on the distance between BSs and users. This
weight factor can be described as wkn = (dkn/

∑2
i=1 dki)

1/α



Fig. 1. Box plots of Utility function results K=3 N=15.

in Etk cluster. As a result, the users with poor channel
conditions and interference are less affected, whereas the users
with good channel conditions are more affected and therefore,
their data rate is reduced. Taking into account all the above
remarks, the joint user association and power allocation can
be expressed as

U∗ = max
{b,y,p}

∑
i∈N

Ukt(Ri)

s.t. C1 :Q(Etk) ≥ 0

C2 :bkn ∈ {0, 1},∀n ∈ N ,∀k ∈ K,
C3 :ytn ∈ {0, 1},∀n ∈ N ,∀t ∈ T ,

C4 :
∑KBS

i=1
bin = 1,∀n ∈ N ,

C5 :
∑TRB

i=1
yin = 1,∀n ∈ N ,

C6 :
∑N

n=1
ytn ≤M,∀t ∈ T ,

C7 :
∑|Etk|

i=1
ptki ≤ 1∀t ∈ T ,∀k ∈ K,

where Ukt(Ri) = wkibkiytiR
t
ki defines the utility function,

and b and y are the set of all indicators b and y, accordingly.
The condition of SIC is given by the constraint C1 that
classifies the users in each cluster. Whether a relation between
user n and BS k will take place, it is denoted with constraint
C2. In a similar way, whether a relation between user n and
PRBs t will take place, it is described by the constraint C3.
Constraints C4 and C5 denote the unique relation among a
single user n, a BS k, and a physical resource block t at the
same time. Moreover, constraint C6 indicates the fact that the
most M users may be served in any PRB. The total power
allocation coefficients in each cluster should be less or equal
to one and this described by constraint C7.

III. NUMERICAL RESULTS

A set of simulations is performed to evaluate the algorithms’
performance and to find a solution to the user association
problem. In this context, we generate users and the BSs
randomly uniform distributed within an area of radius of
550 m. In our case, we consider a scenario of 15 randomly
deployed users, which are served by 3 BSs, each having
5 PRBs. Moreover, each physical resource block supports
M = 2 NOMA users at the most. The shadowing is assumed
to be a lognormal distribution with a standard deviation of 8
dB. We set the PRB bandwidth equal to 180 kHz, which is
the value used in 4G/LTE.

A comparative study between the results of the two algo-
rithms GWO and PSO is outlined. We select the population
size to be equal to 200, and the maximum number of iterations
to be equal to 24. The derived set results in 500 different
simulations. In each simulation, a random topology is created,
and each of the two algorithms is performed to find a solution.
Apparently, simulation results from 500 different random

(a)

(b)

Fig. 2. CDF of Utility function results for a) OMA b) NOMA



topologies are obtained.
Fig. 1 illustrates the obtained results (in box plots) of each

NOMA and OMA scheme combined with GWO and PSO. We
can easily conclude that the 50% percentiles (median value)
of sum rate for the NOMA schemes (for both algorithms) is
greater than the corresponding values of OMA ones. Moreover,
we observe that GWO algorithm produces better results, in
terms of median values, compared to PSO algorithm.

Fig. 2 portrays the Cumulative Distribution Function (CDF)
for both OMA and NOMA schemes. From the presented
graphs, it is clear that the GWO algorithm outperforms the
PSO algorithm in the NOMA scheme, whereas the two algo-
rithms have a similar performance in the OMA scheme.

One of the performance metrics in EAs is the convergence
speed. Fig. 3 shows the obtained average convergence rate
after 500 trials. We can deduce that both algorithms converge
at a similar speed, however GWO converges at a larger value
of iterations than PSO.

Next, we study the effect of increasing the number of users.
To this end, we set the number of users to be varied from 12
to 24 by a step of 3. In each users case, 500 simulations
are performed for both algorithms. Fig. 4 depicts the average
sum rate results versus the increasing number of users. We
can notice that, for the NOMA scheme, GWO algorithm
produces better results than PSO. It is also noticeable that
both algorithms perform in a similar way for the OMA
scheme. Moreover, the sum rate values for the NOMA scheme
decrease, when the number of users increases. Therefore, we
can conclude that more network resources are required, as the
number of users increases, thus becoming more difficult to
solve the problem.

IV. CONCLUSION

In this paper, we have introduced the formulation of the
joint user association and power control problem for downlink
NOMA networks. We have addressed this problem by using

Fig. 3. Average convergence rate graph.

Fig. 4. Sum rate with increasing number of users.

emerging swarm intelligence algorithms with low complex-
ity.Numerical results demonstrate a better overall performance
of GWO algorithm, compared to PSO, for the same network
topologies. In terms of convergence speed, GWO produces
better of equal results, when compared to PSO algorithm.
The derived results also imply that the problem becomes
more difficult to solve and requires more network resources,
when the number of users increases. Future work includes the
addition of of quality of service (QoS) constraints to the guven
problem.
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