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Abstract—With the emergence of DNN accelerators the main
focus of such systems usually lies on utilizing local memories and
reducing the size of the processed data, since delay and energy
consumption are dominated by data transfer. Utilizig emerging
memory technologies, such as ReRAMs, these goals might be
attained much easier, due to advantageous non-functional and
functional properties.

One of the key drawbacks of such systems are reliability and
variability of devices of such technologies. To certain degree,
DNNs are resilient to soft and hard errors in their memory cells,
so these issues might be surmountable depending on the device
properties, but eludes trivial analyses known from the digital
domain. Here the dynamic behavior of the devices comes into
play and must be simulated in order to get a decent degree of
confidence on the reliability of the hardware and therefore also
yield.

In order to tackle this issue we present an accelerator architec-
ture and matching analysis pipeline that allows the user to specify
and train a net topology and then test the design against some
input activations with different randomized device properties.
Using this approach we can estimate the inference results and
other system and algorithm level properties in presence of
different device level properties which might for example be
extracted from real world measurements. Such a system can
help the user in the design of their net or give them hints on
the required device properties for a given net or aid them in
evaluating existing designs.

I. INTRODUCTION

Artificial intelligence by the usage of deep neuronal net-
works is one of the most important research area in the
recent years[3]. Apart from algorithmic improvements, many
different new hardware architectures were developed to speed-
up the process of inference. Examples include GPUs (e.g. [11,
13]) as well as dedicated neuromorphic hardware accelerators
such as Google’s TPU[6].

For developing such new accelerators one of the main con-
cepts is to maximize the energy efficiency, meaning to perform
high speed inference, with billions of MAC operations (mul-
tiply and accumulate) while maintaining a minimum power
budget. While the calculations itself could be implemented
with dedicated hardware architectures, one of the crucial tasks
is minimizing external memory access and maintaining data
stationarity. This has been the prime target of quite a few

accelerator architectures such as the Eyriss architecture[1] or
the COSY architecture[19].

When performing a neuronal network inference using a
matrix vector multiplications, with a weight matrix W and
input vector x, a major part of the energy will be spent while
transferring the weights wi,j from external memory in the chip.
Therefore, one idea is, to store as much as possible weights
inside the chip, to avoid external memory access. Emerging
memories might prove beneficial here given their differing
properties, e.g. non-volatility in memristive devices.

Moreover, since many technologies offer the possibility to
store more than 2 states in one memory cell (e.g. ReRAM),
this kind of memory is a good candidate for highly quantized
neuronal networks, which makes it possible to store exactly
one weight wi,j in one ReRAM cell. For example research has
shown that ternary network can be very effective in solving
different tasks, as described in [8].

Using new memory technologies can lead to extensive
redesigns of the hardware architecture, if technology or tech-
nology parameters are subject to changes. For example, if
cycle-to-cycle variability is reduced, the possibility of storing
less quantized parameters might become viable. To capitalize
on this advantage, readout circuits need to adapted and the
net could potentially be reduced to a smaller one. Algorithmic
and system level properties are therefore heavily influenced by
device level properties.

Therefore, we propose in this paper a new design method-
ology by providing model-to-circuit compiler, which automat-
ically derives a circuit from a given neuronal network model.
Due to the possibility of a mixed-signal evaluation, we are
able to evaluate functional and non-functional properties.

Many different use cases for such a flow are immediately
apparent:

• Given a set of real world devices with different character-
istics, one can investigate which are a viable candidates
for a given net.

• Finding which nets typologies are suitable for a combi-
nation of a given task and device.

• Investigating which variation parameters are still accept-
able or will affect yield.



While it is possible to investigate this using traditional
flows, doing so for e.g. the feedback loops, where one tries
to tie system level properties to other parameters, are tedious
and include a lot of designer input. With our approach the
generation of designs and evaluation of these designs under
some defined device level properties is done mostly in an
automated fashion.

Summarizing, the contributions of this paper are:
• A generic architecture, based on systolic arrays, as a

general IP-block for building hardware accelerators for
fast and energy efficient neuronal network inference.

• A model-to-circuit compiler which uses this architecture
as a template and adapts it to the given neuronal network
model to instantiate said architecture.

• A mixed-signal simulation environment, which allows to
automatically evaluate the created architectures. This will
allow for an automated design-space exploration as a long
time goal.

The paper is structured as follows. In this Section we presented
the importance and the contribution of our work. Next Section
will discuss related work and basic principles for our architec-
ture. In Section III we will present the methodology, meaning
the generic architecture, the model-to-circuit-compiler and
the mixed-signal simulation environment. Next, we show our
methodology by example of a simple multi-layer net, showing
results and discussing it. Finally, in Section V we will conclude
our paper and give a outlook of future work.

II. FUNDAMENTALS

In this section we will discuss the fundamentals of the tech-
nologies that are used to test and evaluate our methodology.
In particular this will be systolic arrays, ReRAMs and design
considerations when combining these technologies.

A. ReRAM

Many researchers highlight the ability to push the bound-
aries set by traditional memory technologies with memristive
memories. One instance of memristive devices are ReRAMs.
These devices are in essence memories that store data using
their resistive state. ReRAMs, as can be seen in Fig. 1a, are
usually manufactured as metal-insulator-metal structures that
are, similar to MIM capacitors, CMOS compatible and can be
manufactured in the processing line.

The operation of ReRAM devices is as follows:
a) Read: Using a small voltage, the current resistance

value is determined, representing the state of the devices.
b) Write: Using a larger negative or positive voltage,

the device state is altered. In ECM-based technologies, a
common type of ReRAMs, this amounts to the formation of
a filament structure with lower resistance as the surrounding
insulator (Fig. 1b). The length of the filament and therefore
the resistance can be coarsely modulated, leading to the
ability to store more than one bit of information. Researchers
have shown, that up to 6.5 bits of information per cell are
possible[17]. For achieving these states in practice, different
techniques exist, such as current compliance or pulsing [15].
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Fig. 1: Subfigure (a) shows a MIM stack of a HfO2-based cell with
TiN electrodes. It is placed on top of a regular MOS transistor which
acts as a selector device. Such a setup is referred to as a 1T1R device.
Subfigure (b) shows an idealized representation of an ECM-based
ReRAM device. Given a high enough voltage across its terminals,
it as able to grow or retract a filament composed of Cu-Ions from
the top electrode. The state of the device is mainly determined by
the geometry of the filament - the distance between top electrode
and filament is considered as the modulated variable for achieving
different resistance levels.

The most critical aspect in this is to deal with the variability
of the devices[10].

B. Systolic Arrays

In order to leverage these technologies we decided to
investigate these technologies in weight storage for a systolic
array which implements matrix-vector multipliers for large
input sizes. Systolic arrays are regular structures for computing
tasks on matrices presented by Kung and Leiserson in 1978[7]
and are a standard component of most DNN accelerators
due to their inherent parallelism and advantages for energy
and latency efficient layouting in ASICs. The general idea
is illustrated in Fig. 3: The input vector is fed in from the
left where it is multiplied with a weight and also passed
unaltered onto the next column. A cell performing such a
computation is referred to as a Processing Unit (PU). The
result is passed down to the next row, where it is added to
its multiplication; this is called a multiply-accumulate (MAC).
Using this technique an array of n×m can calculate the result
in n + m cycles. For larger inputs partial results need to be
accumulated (as depicted with ACC units).

The usage of novel memory technologies was already
explored in [9] with a focus on energy and area savings. In
this work we are focusing on functional design criterions:

C. Design Considerations

Since the devices exhibit device-to-device (D2D) and cycle-
to-cycle variability, depending mainly on technology and ma-
nufacturing, one needs to employ measures to limit the impact
of the variations. This variability has been target of extensive
studies, such as [14], due to its impact on performance when
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(e) Storage cell as shown in Fig. 2c

Fig. 2: This figure shows the analog storage cells embedded in our Mixed-Signal-Simulation. The top-level view of the three-level cell is
depicted in Fig. 2c while the top-level view of the five-level cell is shown in Fig. 2d. It is controlled by a memory controller, which provides
the digital control signals read, reset and write and which reads the digitized values from bit1/bit2 respectively val1− 4. The five-state
ADC utilizes thermometer-encoding as it is easy to work with. The implementation of the storage cell itself can be seen in Fig. 2e. It applies
a read (200mV), reset (−1.25V) or write (1.25V) pulse to the top electrode of a ReRAM device when a control signal is generated. The
signal at the bottom electrode doubles as the input for the ADC circuit (and is depicted in readout). Fig. 2a and Fig. 2b show waveforms
generated by running a parametric simulation performing cycles of reading and writing increasing values into the cell. Pulses with small
amplitudes in the control and readout signals correspond to read pulses, to generate a voltage for the ADC to read the current resistance value
and larger amplitudes to write pulses, which should alter the resistance state of the device. Successive pulses should in an ideal scenario
alter the device in a way that lead in the following reads to a increased value. This value is determined during read pulses from small
differences in voltage at the readout node. We varied the oxide thickness in different linearly spaced steps, ranging from 6.45 nm to 6.6 nm
to determine whether a device’s variance impacts the performance. One can see drastic differences in the resulting values for some of the
simulations, the device is not reliably set, an erroneus value is read back. This is reflected by the bit/val values, not reaching the matching
voltages during the read phase. The simulation uses the Stanford ReRAM model[5].

used in digital systems. An example for these variations can
be seen in Fig. 2. This work tries to enable the user to
determine whether a neural network embedding such storage
cells suffering from variances is still able to perform in the
same way. In the worst case scenario, the write circuitry is
unable to correctly alter device state or the read circuitry
is unable to read the correct value. This forces the designer
to consider error correction, error tolerant logic/algorithms or
some circuit-level mitigation (e.g. [12]).

Since DNNs are known to exhibit some inherent redun-
dancy, calculation errors might be tolerable. In [16] a more
detailed analysis of this phenomenon can be found and in [2]
it is explored how sensitive to errors individual weights are.

The aspect of error tolerance is one of the key components

of our approach. Using device models with randomly altered
parameters we can simulate such variabilities and determine if
a given net will still yield correct results. Our automated flow
handles everything from training the net down to a mixed-
signal simulation based on an inferred netlist and a testbench
with weight and given activations.

III. METHODOLOGY AND IMPLEMENTATION

Our approach to investigate this issue is a pipeline from
a neural net specification to a mixed signal simulation. The
block diagram in Fig. 4 illustrates the flow we will describe
in the following subsections. In principle it can be divided into
three stages:
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Fig. 3: Subfigure (a) shows the construction of a systolic array.
Activations, which are either the input to the algorithm, or passed
down from a layer higher up, are passed from left to right in a
pipelined fashion. In each Processing Unit (PU) the activation is
multiplied and added to the partial sum that is passed down from
the cell one row higher up. The accumulators (ACC) at the bottom
edge sum up the incoming partial sums from above. Subfigure (b)
details the composition of a PU cell. It consists of three building
blocks: (1.) pass-through register, which builds up the Pipeline the
forwards the activations across columns. (2.) weight register, which
stores the multiplicand in the MAC operation, which in our case is
a multilevel ReRAM cell and auxiliary circuitry for read and write
(3.) arithmetic components, which are a multiplier and adder which
implement the MAC operation.

1) Net Training
2) Hardware Generation
3) Simulation/Evaluation

In this section we will cover these stages.

A. Training/Model-to-Netlist Transformation

The concept of hardware generators and generic config-
urable designs for DNN accelerators was already investigated
by other researchers (e.g. [18], or as open source software
[20]), but our flow relies on our own hardware generator, that
is adapted to this specific usecase which is not supported by
traditional generators. It abstracts the weight memory in such
a way that it can be implemented using different technologies,
supporting arbitrary quantizations, not necessarily relying on
regular binary memories. The focus of the generator is not to
generate the best real world systems, but the exploration of the
design space; For readers interested in current developments
in this area, [21] provides a good overview.

The topological features of the neural net are given by the
user in form of Keras program. This representation was chosen
since most models are derived from some program using
standard toolkits, such as PyTorch, Keras or Tensorflow. For
the quantization of the weights specialized code is provided
which has little overhead when integrating it into existing
Keras programs. This custom code is specifically designed
to adapt to the needs in multi-level memories, since we are
not only covering the case of reduced bits, but for arbitrarily
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Fig. 4: This block diagram illustrates the implemented flow. User
defined inputs are on the left, while output relevant to the designer
is on the right. The end goal of the simulation runs is a report on the
reliability in presence, which is shown in detail in Fig 5.

quantized values (e.g. a user can specify, that exactly five
values shall be used, which is not power of two range of a
normal binary number). The main advantage of this approach
lies within its flexibility: Many existing programs can be
used with slight modifications; Although it might have been
more general to rely on given exchange formats at this stage
and let the user output their nets to these, we opted to
integrate training in our flow, since quantization can be flexibly
introduced at any stage of the generation. The user has the
option to either quantize after training, or train with quantized
weights.

After the training the model is exported into ONNX, a
graph-based file format for neural nets and then passed onto
our custom hardware generator. This generator converts the
given nodes into hardware components and wires them ac-
cordingly using VHDL as the HDL. The generator does not
generate any code for the weight storage, this component is
provided by the user. This lets the user pick any readout
circuitry and device models for the simulation, as long as the
appropriate interface is kept. These components are required
to model the variations by reading parameters from text files.
Since most models are written in Verilog-A, this is fairly easy,
because the language and most simulators support text I/O.

B. Simulation Setup

For modeling the variation for a given distribution each
analog memory device is provided with a random initialization
of user chosen parameters. Subsequently, multiple runs with
different values are executed in order to evaluate how sensitive
the generated hardware embedding these memory devices is
to these variations. This allows for the evaluation whether
the hardware is able to cope with the resulting defects and
variations. We used the mixed-signal environment described in
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Fig. 5: This is the way results are presented by our automated flow. The tables show a comparison of a net with 3 possible states in the
weight memory to a net with 5 possible states, along with two different distributions of variation parameters. Each table corresponds to a
variation distribution for a given net, with each row corresponding to a sample drawn from this distribution. The columns labeled “TC”
represent a different activation as test input to the network. Both networks share the same topology, training data and number of training
epochs. The device model used was (as with Fig. 2) the Stanford ReRAM model with normally distributed variations in the Tox variable.
The mean of the distribution was the default value, while the standard deviation is given in the figure. For this classification task based on
a number pattern, we opted, in order to highlight the differences in presence of variations, to use the angle between expected and actual
output vector normalized to the range of [0; 1] (< 0.5 indicates correct outputs, incorrect otherwise). This way one can notice finer details,
when the net still classifies the input correctly according to the class with the highest output value. A score is calulated to quickly estimate
the reliability of the resulting hardware by averaging the aforementioned values. For brevity only three sets of variations and three test case
activations each are included.

[...]
sim:
[...]
activations:
- file: act0.csv

expect: [1,0,0,0,0,0,0,0,0,0]
- file: act1.csv

expect: [0,1,0,0,0,0,0,0,0,0]
[...]
variations_samples: 10
variations:
- parameter: tox

type: gaussian
mean: 1.19
stddev: 0.1

[...]

Fig. 6: An example for simulation configuration is shown. For the
simulation different activations can be specified as Pass/Fail-type
tests. In this example a net for the MNIST dataset is investigated.
The activations section specifies different activations by stating a file
and an expected output of the net. If this output does not match the
expected value, the test is considered a failure. Parameters subject
to variations can be specified in the variations section. These are
randomly drawn from a user specified distribution such as a Gaussian
or a log-normal distribution.

[4] to run these simulations. How these effects can be observed
is detailed in our discussion of the results in Section IV.

C. Integration
The flow is integrated in order to be useful for large-scale

design space explorations. A configuration is provided by the
user specifying the device level properties as well as some
technical parameters relating to the execution of used tools.
An example for this can be seen in Fig. 6. In a design space
exploration different variations can be tested. This data can
then be used to investigate different aspects, as described
previously.

IV. DISCUSSION

We found that this approach yields a tool that is suitable
for the task. The results show different failure characteristics

for different variation settings. Our tool generates a table of
results for different runs and test cases. It can for example
be investigated, whether certain classes of input data will
consistently fail with a certain type and magnitude of variation.

In Fig. 5 a report for an example net can be seen. In
this example we trained two networks on a simple binary
classification problem. One utilizes ternary while the other
uses quinary weights. The network utilizing quinary weights
yields an accuracy of 98.7% while the other network settles at
72.7% as evaluated by Keras after training. However, as shown
before, a storage cell with less quantized weights might be
more susceptible to variations and, ultimately, provide worse
accuracy. Ultimately, we could find that the three weight state
net was less susceptible to variations in general and outper-
formed the quinary net. Additionally we could determine other
effects: The color coding of the tables lets the user quickly see
which activations for are affected which net in magnitude. Red
fields indicate a failed test case for the net with a certain set
of variation parameters, while green fields indicate a passing
one. We can see that the quinary net has issues to correctly
classify test case no. 1; we also observed that for the ternary
net, a low variation yielded completely identical and correct
results for all testcases under all variations.

We plan on larger investigations on well known networks
and network topologies as future work.

V. CONCLUSION

In this work we have shown the use cases and benefits of
determining the system and algorithm level effects of device
properties in emerging multibit memories using an automated
custom flow created specifically for this task. Our approach
lends itself well for design space exploration in this field, as
well as some potential future work. For example, this approach
could automatically assist in “retraining” the net when the
effects of variations are apparent, or for estimating the effects
of switching to a different memory technology.
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