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Abstract—Approximate computing is a technique to trade-
off accuracy and hardware cost. It increases energy efficiency
that leverages application-level tolerance to few errors in many
applications including image processing, multimedia, machine
learning and wireless communication. Truncated adders, as
the most conventional approximate architectures, compute the
addition of most significant bits, and produce small errors with
high probabilities. In prior art, the adders have been analyzed
considering uniformly distributed input data. However, in digital
signal processing, the data has a distribution which can be
considered as Gaussian distribution characterized by a mean
value and standard deviation. This paper studies the effects of
input data distribution on small-error approximate adders. We
will show that the effects of Gaussian distribution can be modeled
for the approximate adder architectures.

Index Terms—Approximate computing, adder architecture,
Gaussian distribution, error-cost trade-off

I. INTRODUCTION

Increasing vulnerability of the computing systems to errors
in underlying circuits is a growing concern nowadays. As vari-
ability increases, achieving deterministic behavior becomes
increasingly expensive in modern technologies. As a promising
technique, approximate computing redesigns a logic circuit to
accept a reduced level of accuracy in response to languishing
benefits of the technology scaling [1].

Approximate adders, as the key components of the arith-
metic circuits, have attracted researchers’ attention in the field
of approximate computing. A close investigation into the va-
riety of approximate adders divides them into two philosophy
groups considering their errors: 1) small errors or 2) unlikely
errors [2]. Some examples of the small errors are the Lower-
part OR Adder (LOA) [3], the non-zeroing bit truncated adder
proposed in [4], and the Optimized Lower-part Constant-OR
Adder (OLOCA) [5]. In the second philosophy, the errors
are engineered to appear infrequently, even if they are large
when they appear. The examples of these philosophies are
the Almost Correct Adder (ACA) [6], the Generic Accuracy
Configurable Adder (GeAr) [7], the Error Tolerant Adder
(ETAII) [8] and the Equal Segmentation Adder (ESA) [9].

Prior studies of approximate adders have considered uni-
form input distribution [10]. In fact, in digital signal pro-
cessing, the data has a distribution which can be considered
as Gaussian distribution characterized by a mean value and
standard deviation.

In this paper, the impact of input data distribution on the
characteristics of approximate adders is studied. Two state-

of-the-art small-error approximate adders are selected for
this study as an illustration: In [4], authors have proposed
a configurable approximate architecture based on truncation
strategies. This architecture which we call Non-Zeroing Bit
Truncated adder (NZBT), uses control signals to switch be-
tween approximate and exact modes dynamically. In [5], an
optimized small-error approximate adder for mean squared
error (MSE) has been proposed by the authors.

First, the behavior of the adders in both uniform and
Gaussian distribution is compared. Subsequently, in order
to illustrate the fact that the behavior of the approximate
architectures in Gaussian distribution can be modeled, a linear
model is presented for the studied architectures considering
Gaussian distributed input data.

The paper is organized as follows: Section II reviews the
approximate adders which are studied in this paper. The
comparison between the effects of uniform distribution and
Gaussian distribution on the adders is presented in Section
III. The accuracy model considering different mean values and
stand deviations is proposed in Section IV. Finally, Section V
concludes the paper.

II. APPROXIMATE ADDER

Approximate n-bit addition is generally designed to break
the carry chain in order to decrease the latency and power
consumption. The small-error adders selected in this paper
perform the addition on the basis of the truncated adders.
A truncated adder [11], calculates the addition of (n-k) Most
Significant Bits (MSBs), where k is the number of truncated
bits. Consequently, depending on the k, the truncated adder
performs faster and is more cost-effective than its exact
counterpart.

The idea of the NZBT adder, proposed in [4], is to ap-
proximate the adder by forcing the truncated output Least
Significant Bits (LSBs) to constant-1. To do so, the authors
propose to fix the k LSBs of one input to ’0’s and the other
input to ’1’s. Using k control bits as well as extra gates, the
adder can be configured to different levels of accuracy. In
order to use the adder for comparison, we consider the adder
switched to the approximate mode. As a result, changing k,
different accuracies can be achieved using NZBT adder.

In [5], an optimized small-error approximate adder for mean
squared error, called OLOCA, has been proposed by the
authors. OLOCA, similar to NZBT, calculates the addition of



(n-k) MSBs. The difference is that OLOCA forces (k-2) LSBs
to constant-1 and the (k−1)th and (k−2)th are bitwise ORed.
This way the architecture has a very low MSE.

In the next section, the above-mentioned architectures are
compared with conventional truncated adder [11] considering
different error metrics. The conventional truncated adder is
called Trunc in the rest of this paper.

III. COMPARISON RESULTS OF DIFFERENT DISTRIBUTIONS

In this section the effects of different input data distributions
on the accuracy of the approximate adders are studied. In order
to compare the adder architectures, first we introduce the error
metrics used in this paper. Afterwards, the adder architectures
are compared considering uniform distributed inputs. Finally,
the accuracy of the approximate adders is analyzed considering
Gaussian distributed inputs.

A. Error metric
In this paper, the error is defined as the difference between

the approximate and the accurate output results of the adder:

ε = s− ŝ, (1)

where ŝ is the approximate (erroneous) output of the adder
and s is the accurate result.

The mean squared errors (MSE) is the metric which incor-
porates the variance of the errors. For a n-bit adder, there are
22n possible addition. However, considering uniform random
numbers, the MSE can be calculated as follows:

MSE = E
[
ε2
]
=
∑
j

ε2jPr[εj ] , (2)

where Prj is the probability of the εj . In fact, Eq.(2) is the
general form, and when considering all the possible additions,
it can be written as:

MSE =
1

22n

22n−1∑
j=0

εj
2. (3)

Since for a truncated adder, only the k LSBs are erroneous,
the errors repeat for 22h additions, where h is the number of
exact MSBs (i.e. h = n−k). Eq.(3) can be rewritten as below:

MSE =
1

22k

22k−1∑
j=0

εj
2. (4)

Having MSE, Peak Signal-to-Noise Ratio (PSNR) can be
defined as:

PSNR = 20× log(MAX/
√
MSE), (5)

where MAX is the maximum possible output value while
adding two unsigned n-bit operands, i.e. 2× (2n − 1).

To quantify the quality of the approximate units, Mean
Absolute Error (MAE) is also an important metric which
has been frequently considered in the literature. For uniform
distributed inputs, MAE is defined as below:

MAE =
1

22n

22n−1∑
j=0

|εj | . (6)

Table I
COMPARISON RESULTS IN TERMS OF PSNR AND MAE

PSNR/dB MAE
n k Trunc NZBT OLOCA Trunc NZBT OLOCA

32
16 101.68 110.13 112.17 65530.25 21835.74 15366.06
12 125.76 134.20 136.25 4096.98 1367.28 960.95
8 149.80 158.30 160.35 254.88 85.27 59.91

16
8 53.54 61.96 64.01 254.94 85.37 60.00
6 65.67 74.01 76.05 62.99 21.33 14.99
4 78.08 86.06 88.12 15.00 5.32 3.70

8
4 29.88 37.87 39.93 15.00 5.31 3.70
3 36.41 43.95 46.04 7.00 2.62 1.78
2 43.54 50.18 52.39 3.00 1.25 0.75

B. results in uniform distribution

In order to compare the approximate adder architectures
considering uniform distributed inputs, 106 uniform random
numbers have been generated for 8, 16, and 32-bit operands.
The accuracy of the conventional truncated adder is compared
with NZBT and OLOCA adders. The results for PSNR and
MAE are tabulated in Tab.I.

It can be seen from the table that the OLOCA architecture
outperforms both NZBT adder and conventional truncated
adder for all the bit-widths. For example, a 32-bit OLOCA
adder with 12-bit truncation has 30 % and 77 % lower MAE
in comparison with NZBT and Trunc adders, respectively.

C. results in Gaussian distributions

In this section, the effects of Gaussian distribution on
the approximate adders are discussed. Here, the results from
uniform distribution are compared with Gaussian distribution
results to see if they are still valid in real scenarios such as
digital signal processing applications.

To analyze the effects of distribution on an 8-bit NZBT
adder, we select two scenarios where the mean values of the
Gaussian distributions are µ=0 and µ=7. The results for PSNR
for truncated bits from k=2 to k=6 are depicted in Fig.1.
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Figure 1. different PSNR results of Gaussian and uniform distribution

As can be seen in Fig.1, for k=4, when µ=7, the accuracy of
the NZBT adder does not follow the expected slope (i.e. 6dB
decrement of PSNR for increasing k by one) and an abrupt
change is observed. That shows Gaussian distribution of input
values brings different result from uniform distribution.



To study the error behavior of the adders for different mean
values and standard deviations, n=8 and k=3 are chosen as
an illustration. In this scenario, 28 different mean values (µ)
(the expectation of the distribution) from 0 to 255 and 20
different standard deviations (σ) from 0 to 20 are analyzed.
The results for MSE and MAE are compared for NZBT and
OLOCA adders in Fig.2.

(a) (b)

(c) (d)

Figure 2. The comparison of MSE and MAE for different mean value and
standard deviation: (a) MSE for NZBT adder, (b) MSE for OLOCA adder,
(c) MAE for NZBT adder, (d) MAE for OLOCA adder,

As depicted in Fig.2, the MSE and MAE of OLOCA adder
for most of the scenarios is lower than the ones of NZBT
adder. It can be seen that the error metrics are analyzed for
various µ and σ values, as mentioned above. The results in
Gaussian distribution break the rule in uniform distribution. In
other words, it can be seen that unlike uniform distribution that
OLOCA adder always outperforms NZBT adder, in Gaussian
distribution there are scenarios in which the NZBT adder is
more accurate than OLOCA adder. Illustratively, we choose
one scenario that σ and µ are both 0, and the results are shown
in Fig.3. Similarly, the scenario in which σ is 0 and µ is 4 is
depicted in Fig.4.

As can be seen in Fig.3 and Fig.4, for small values of σ, con-
siderable deviations in PSNR are observed with the changes
in mean values. As illustrated in the figures, with extremely
small sigmas, the difference between PSNR for Gaussian and
uniform distributions is maximized. This difference is about
6.7 dB for NZBT adder and 8.05 dB for OLOCA adder in
Fig.4 as an instance.

On the other hand, with the Gaussian distributed inputs
having large stand deviations (σ), the mean value (µ) plays
no role in accuracy. As it is shown in Fig.3 and Fig.4,
while σ is large, influence of specific µ is weak and the
curve is flat to approaching results in uniform distributions. In
addition, as discussed before, unlike in uniform distribution in
which OLOCA adder always outperform NZBT, in Gaussian
distribution, this is not always the case. For example, in Fig.4,
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Figure 3. PSNR versus standard deviation for the case µ=0
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Figure 4. PSNR versus standard deviation for the case µ=4

for small values of σ, NZBT adder has a better PSNR than
OLOCA adder.

IV. MODEL

To analyze the error behavior of an n-bit adder in Gaus-
sian distribution, normally different 2n different mean values
should be considered. However, for an n-bit truncated adder
with k-bit truncation, considering only the 2k mean values the
error behavior of the adder can be modeled. In this section, in
order to be consistent with the previous section, we consider 8-
bit adders, and we analyze the error of the adders for standard
deviation from σ = 0 to σ = 20.

From the previous section, we know that increasing the
standard deviation the error of the adders approaches the
errors in uniform distribution. The error of the adders has
been modeled in uniform distribution [4], [5]. As a result,
the endpoints of the curves are known.

In order to model the start point, considering σ = 0, the two
inputs of the adders are the same. Consequently, the MSE of
the NZBT adder can be calculated as:

MSEσ=0 = (2k − 1− 2µ)2 . (7)

From Eq.(5) and Eq.(7), the PSNR for the start point can be
calculated. For example for an 8-bit NZBT adder with k=3,
it can be concluded that there are only 4 unique curves for
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Figure 5. repetition of PSNR with changing µ for (a) NZBT adder, and (b)
OLOCA adder.

error versus standard deviation. This repetition of PSNR for
different mean values can be seen in Fig.5(a) for NZBT adder,
and in Fig.5(b) for OLOCA adder. Note that the start point of
the OLOCA adder can be calculated in a similar way.

It is worth mentioning that from Eq.(7), it can be concluded
that the minimum MSE of the NZBT adder can be 1 for any
k, which results in maximum PSNR equal to 54 dB for the
8-bit adder.

Considering that the start point and the endpoint of the
errors have been modeled, we propose a linear model to
understand the behavior of the errors. As a result, if we
model the σ in which the error reaches the value in uniform
distribution, we can find the slope for the linear model, and the
model is complete. Based on the observation, we modeled this
point with σ = 2k−2 which results in an acceptable accuracy
for the model.

PSNR =

{
σ(PSNRu−PSNR0)

2k−2 + PSNR0 if σ < 2k−2

PSNRu otherwise
(8)

(a) (b) (c)

Figure 6. linear NZBT model for differnt k with µ=0 (a)model for k=3
(b)model for k=4(c)model for k=5

(a) (b) (c)

Figure 7. linear NZBT adder model for differnt k with different mu (a)model
for k=3 µ=3 (b)model for k=4 µ=7(c)model for k=5 µ=15

where PSNR0 and PSNRu are the PSNRs for the start point
and the endpoint, respectively.

To evaluate the accuracy of the model, the simulation results
are compared with the results from the model. The results are
depicted for some ascending and descending cases in Fig.6 and
Fig.7, respectively. As can be seen in the figures, the model
accurately predicts the values of PSNR for different k, σ, and
µs.

V. CONCLUSION AND FUTURE WORK

This paper discusses the influence of different input data
distributions on small-error approximate adders. In many ap-
plications such as image processing, machine learning and
wireless communication the data has a distribution which can
be considered as Gaussian distribution. It has been shown in
this paper that considering Gaussian distribution the selection
of approximate architectures might be different from uniform
distribution. Consequently, it is necessary to take the effects
of data distribution on the accuracy of the approximate archi-
tectures into consideration.

In addition, presenting a linear model to analyze the accu-
racy of a truncated adder, we showed that the error behavior
of the adders can be modeled for Gaussian distributed inputs.
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